Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(40): e2204071119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36179046

RESUMEN

Many tumors express meiotic genes that could potentially drive somatic chromosome instability. While germline cohesin subunits SMC1B, STAG3, and REC8 are widely expressed in many cancers, messenger RNA and protein for RAD21L subunit are expressed at very low levels. To elucidate the potential of meiotic cohesins to contribute to genome instability, their expression was investigated in human cell lines, predominately in DLD-1. While the induction of the REC8 complex resulted in a mild mitotic phenotype, the expression of the RAD21L complex produced an arrested but viable cell pool, thus providing a source of DNA damage, mitotic chromosome missegregation, sporadic polyteny, and altered gene expression. We also found that genomic binding profiles of ectopically expressed meiotic cohesin complexes were reminiscent of their corresponding specific binding patterns in testis. Furthermore, meiotic cohesins were found to localize to the same sites as BORIS/CTCFL, rather than CTCF sites normally associated with the somatic cohesin complex. These findings highlight the existence of a germline epigenomic memory that is conserved in cells that normally do not express meiotic genes. Our results reveal a mechanism of action by unduly expressed meiotic cohesins that potentially links them to aneuploidy and chromosomal mutations in affected cells.


Asunto(s)
Expresión Génica Ectópica , Neoplasias , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Inestabilidad Cromosómica/genética , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Proteínas de Unión al ADN/metabolismo , Humanos , Masculino , Meiosis/genética , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , ARN Mensajero , Cohesinas
2.
Proc Natl Acad Sci U S A ; 117(4): 2020-2031, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31937660

RESUMEN

The DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning. BORIS (CTCFL), a germline-specific paralog of CTCF, was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS chimeric constructs provided evidence that, besides the N terminus of CTCF, the first two CTCF zinc fingers, and likely the 3D geometry of CTCF-DNA complexes, are also involved in cohesin retention. Based on this knowledge, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the ability of CTCF to retain cohesin. Taken together, our data provide insight into the process by which DNA-bound CTCF constrains cohesin movement to shape spatiotemporal genome organization.


Asunto(s)
Neoplasias de la Mama/metabolismo , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN de Neoplasias/metabolismo , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , ADN de Neoplasias/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Genoma Humano , Humanos , Unión Proteica , Dominios Proteicos , Células Tumorales Cultivadas , Cohesinas
3.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983050

RESUMEN

Cancer testis antigens are ideal for tumor immunotherapy due to their testis-restricted expression. We previously showed that an immunotherapeutic vaccine targeting the germ cell-specific transcription factor BORIS (CTCFL) was highly effective in treating aggressive breast cancer in the 4T1 mouse model. Here, we further tested the therapeutic efficacy of BORIS in a rat 13762 breast cancer model. We generated a recombinant VEE-VRP (Venezuelan Equine Encephalitis-derived replicon particle) vector-expressing modified rat BORIS lacking a DNA-binding domain (VRP-mBORIS). Rats were inoculated with the 13762 cells, immunized with VRP-mBORIS 48 h later, and then, subsequently, boosted at 10-day intervals. The Kaplan-Meier method was used for survival analysis. Cured rats were re-challenged with the same 13762 cells. We demonstrated that BORIS was expressed in a small population of the 13762 cells, called cancer stem cells. Treatment of rats with VRP-BORIS suppressed tumor growth leading to its complete disappearance in up to 50% of the rats and significantly improved their survival. This improvement was associated with the induction of BORIS-specific cellular immune responses measured by T-helper cell proliferation and INFγ secretion. The re-challenging of cured rats with the same 13762 cells indicated that the immune response prevented tumor growth. Thus, a therapeutic vaccine against rat BORIS showed high efficacy in treating the rat 13762 carcinoma. These data suggest that targeting BORIS can lead to the elimination of mammary tumors and cure animals even though BORIS expression is detected only in cancer stem cells.


Asunto(s)
Neoplasias Mamarias Animales , Vacunas , Animales , Masculino , Ratones , Ratas , Proteínas de Unión al ADN/metabolismo , Inmunoterapia/métodos , Factores de Transcripción
4.
Nature ; 518(7539): 331-6, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25693564

RESUMEN

Higher-order chromatin structure is emerging as an important regulator of gene expression. Although dynamic chromatin structures have been identified in the genome, the full scope of chromatin dynamics during mammalian development and lineage specification remains to be determined. By mapping genome-wide chromatin interactions in human embryonic stem (ES) cells and four human ES-cell-derived lineages, we uncover extensive chromatin reorganization during lineage specification. We observe that although self-associating chromatin domains are stable during differentiation, chromatin interactions both within and between domains change in a striking manner, altering 36% of active and inactive chromosomal compartments throughout the genome. By integrating chromatin interaction maps with haplotype-resolved epigenome and transcriptome data sets, we find widespread allelic bias in gene expression correlated with allele-biased chromatin states of linked promoters and distal enhancers. Our results therefore provide a global view of chromatin dynamics and a resource for studying long-range control of gene expression in distinct human cell lineages.


Asunto(s)
Diferenciación Celular , Ensamble y Desensamble de Cromatina , Cromatina/química , Cromatina/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética/genética , Alelos , Desequilibrio Alélico/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Elementos de Facilitación Genéticos/genética , Epigenómica , Redes Reguladoras de Genes , Humanos , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados
5.
Nature ; 488(7409): 116-20, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22763441

RESUMEN

The laboratory mouse is the most widely used mammalian model organism in biomedical research. The 2.6 × 10(9) bases of the mouse genome possess a high degree of conservation with the human genome, so a thorough annotation of the mouse genome will be of significant value to understanding the function of the human genome. So far, most of the functional sequences in the mouse genome have yet to be found, and the cis-regulatory sequences in particular are still poorly annotated. Comparative genomics has been a powerful tool for the discovery of these sequences, but on its own it cannot resolve their temporal and spatial functions. Recently, ChIP-Seq has been developed to identify cis-regulatory elements in the genomes of several organisms including humans, Drosophila melanogaster and Caenorhabditis elegans. Here we apply the same experimental approach to a diverse set of 19 tissues and cell types in the mouse to produce a map of nearly 300,000 murine cis-regulatory sequences. The annotated sequences add up to 11% of the mouse genome, and include more than 70% of conserved non-coding sequences. We define tissue-specific enhancers and identify potential transcription factors regulating gene expression in each tissue or cell type. Finally, we show that much of the mouse genome is organized into domains of coordinately regulated enhancers and promoters. Our results provide a resource for the annotation of functional elements in the mammalian genome and for the study of mechanisms regulating tissue-specific gene expression.


Asunto(s)
Regulación de la Expresión Génica/genética , Genoma/genética , Ratones/genética , Mapeo Físico de Cromosoma , Secuencias Reguladoras de Ácidos Nucleicos/genética , Acetilación , Animales , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Secuencia Conservada , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Masculino , Metilación , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Motivos de Nucleótidos , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo
6.
Int J Mol Sci ; 19(12)2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30513694

RESUMEN

CCCTC-binding factor (CTCF) is a conserved transcription factor that performs diverse roles in transcriptional regulation and chromatin architecture. Cancer genome sequencing reveals diverse acquired mutations in CTCF, which we have shown functions as a tumour suppressor gene. While CTCF is essential for embryonic development, little is known of its absolute requirement in somatic cells and the consequences of CTCF haploinsufficiency. We examined the consequences of CTCF depletion in immortalised human and mouse cells using shRNA knockdown and CRISPR/Cas9 genome editing as well as examined the growth and development of heterozygous Ctcf (Ctcf+/-) mice. We also analysed the impact of CTCF haploinsufficiency by examining gene expression changes in CTCF-altered endometrial carcinoma. Knockdown and CRISPR/Cas9-mediated editing of CTCF reduced the cellular growth and colony-forming ability of K562 cells. CTCF knockdown also induced cell cycle arrest and a pro-survival response to apoptotic insult. However, in p53 shRNA-immortalised Ctcf+/- MEFs we observed the opposite: increased cellular proliferation, colony formation, cell cycle progression, and decreased survival after apoptotic insult compared to wild-type MEFs. CRISPR/Cas9-mediated targeting in Ctcf+/- MEFs revealed a predominance of in-frame microdeletions in Ctcf in surviving clones, however protein expression could not be ablated. Examination of CTCF mutations in endometrial cancers showed locus-specific alterations in gene expression due to CTCF haploinsufficiency, in concert with downregulation of tumour suppressor genes and upregulation of estrogen-responsive genes. Depletion of CTCF expression imparts a dramatic negative effect on normal cell function. However, CTCF haploinsufficiency can have growth-promoting effects consistent with known cancer hallmarks in the presence of additional genetic hits. Our results confirm the absolute requirement for CTCF expression in somatic cells and provide definitive evidence of CTCF's role as a haploinsufficient tumour suppressor gene. CTCF genetic alterations in endometrial cancer indicate that gene dysregulation is a likely consequence of CTCF loss, contributing to, but not solely driving cancer growth.


Asunto(s)
Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Supervivencia Celular/fisiología , Neoplasias Endometriales/genética , Edición Génica , Animales , Sistemas CRISPR-Cas , Proliferación Celular/genética , Proliferación Celular/fisiología , Supervivencia Celular/genética , Femenino , Haploinsuficiencia/genética , Haploinsuficiencia/fisiología , Humanos , Células K562 , Ratones , ARN Interferente Pequeño/genética
7.
Nature ; 459(7243): 108-12, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19295514

RESUMEN

The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene, the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers and insulators in the human genome. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast, enhancers are marked with highly cell-type-specific histone modification patterns, strongly correlate to cell-type-specific gene expression programs on a global scale, and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression.


Asunto(s)
Fenómenos Fisiológicos Celulares , Regulación de la Expresión Génica , Histonas/metabolismo , Factores de Transcripción/genética , Sitios de Unión , Línea Celular , Cromatina/genética , Genoma Humano/genética , Células HeLa , Humanos , Células K562 , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo
8.
BMC Cancer ; 14: 796, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25363021

RESUMEN

BACKGROUND: As cancer-testis MAGE-A antigens are targets for tumor immunotherapy, it is important to study the regulation of their expression in cancers. This regulation appears to be rather complex and at the moment controversial. Although it is generally accepted that MAGE-A expression is controlled by epigenetics, the exact mechanisms of that control remain poorly understood. METHODS: We analyzed the interplay of another cancer-testis gene, BORIS, and the transcription factors Ets-1 and Sp1 in the regulation of MAGE-A1 gene expression performing luciferase assays, quantitative real-time PCR, sodium bisulfite sequencing, chromatin immunoprecipitation assays and pull down experiments. RESULTS: We detected that ectopically expressed BORIS could activate and demethylate both endogenous and methylated reporter MAGE-A1 promoter in MCF-7 and micrometastatic BCM1 cancer cell lines. Overexpression of Ets-1 could not further upregulate the promoter activity mediated by BORIS. Surprisingly, in co-transfection experiments we observed that Sp1 partly repressed the BORIS-mediated stimulation, while addition of Ets-1 expression plasmid abrogated the Sp1 mediated repression of MAGE-A1 promoter. Both BORIS and Sp1 interacted with the TATA binding protein (hTBP) suggesting the possibility of a competitive mechanism of action between BORIS and Sp1. CONCLUSIONS: Our findings show that BORIS and Sp1 have opposite effects on the regulation of MAGE-A1 gene expression. This differential regulation may be explained by direct protein-protein interaction of both factors or by interaction of MAGE-A1 promoter with BORIS alternatively spliced isoforms with different sequence specificity. We also show here that ectopic expression of BORIS can activate transcription from its own locus, inducing all its splice variants.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/genética , Fragmentos de Péptidos/genética , Regiones Promotoras Genéticas , Factor de Transcripción Sp1/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Empalme Alternativo , Línea Celular Tumoral , Metilación de ADN , Técnicas de Silenciamiento del Gen , Sitios Genéticos , Histonas/metabolismo , Humanos , Células MCF-7 , Unión Proteica , Proteína Proto-Oncogénica c-ets-1/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Activación Transcripcional
9.
Genome Biol ; 25(1): 40, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297316

RESUMEN

BACKGROUND: Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters. RESULTS: Here we describe how alternative cancer-testis-specific transcription is activated. We show that intergenic and intronic CTCF binding sites, which are transcriptionally inert in normal somatic cells, could be epigenetically reprogrammed into active de novo promoters in germ and cancer cells. BORIS/CTCFL, the testis-specific paralog of the ubiquitously expressed CTCF, triggers the epigenetic reprogramming of CTCF sites into units of active transcription. BORIS binding initiates the recruitment of the chromatin remodeling factor, SRCAP, followed by the replacement of H2A histone with H2A.Z, resulting in a more relaxed chromatin state in the nucleosomes flanking the CTCF binding sites. The relaxation of chromatin around CTCF binding sites facilitates the recruitment of multiple additional transcription factors, thereby activating transcription from a given binding site. We demonstrate that the epigenetically reprogrammed CTCF binding sites can drive the expression of cancer-testis genes, long noncoding RNAs, retro-pseudogenes, and dormant transposable elements. CONCLUSIONS: Thus, BORIS functions as a transcription factor that epigenetically reprograms clustered CTCF binding sites into transcriptional start sites, promoting transcription from alternative promoters in both germ cells and cancer cells.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Masculino , Humanos , Proteínas de Unión al ADN/metabolismo , Factor de Unión a CCCTC/metabolismo , Factores de Transcripción/metabolismo , Histonas/metabolismo , Cromatina , Sitios de Unión
10.
Nucleic Acids Res ; 39(3): 862-73, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20876690

RESUMEN

Telomerase activity, not detectable in somatic cells but frequently activated during carcinogenesis, confers immortality to tumors. Mechanisms governing expression of the catalytic subunit hTERT, the limiting factor for telomerase activity, still remain unclear. We previously proposed a model in which the binding of the transcription factor CTCF to the two first exons of hTERT results in transcriptional inhibition in normal cells. This inhibition is abrogated, however, by methylation of CTCF binding sites in 85% of tumors. Here, we showed that hTERT was unmethylated in testicular and ovarian tumors and in derivative cell lines. We demonstrated that CTCF and its paralogue, BORIS/CTCFL, were both present in the nucleus of the same cancer cells and bound to the first exon of hTERT in vivo. Moreover, exogenous BORIS expression in normal BORIS-negative cells was sufficient to activate hTERT transcription with an increasing number of cell passages. Thus, expression of BORIS was sufficient to allow hTERT transcription in normal cells and to counteract the inhibitory effect of CTCF in testicular and ovarian tumor cells. These results define an important contribution of BORIS to immortalization during tumorigenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/genética , Telomerasa/genética , Neoplasias Testiculares/genética , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular , Metilación de ADN , Exones , Femenino , Regulación Enzimológica de la Expresión Génica , Células HeLa , Humanos , Masculino , Neoplasias Ováricas/metabolismo , Neoplasias Testiculares/metabolismo
11.
Nat Genet ; 36(10): 1105-10, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15361875

RESUMEN

Chromatin insulators demarcate expression domains by blocking the cis effects of enhancers or silencers in a position-dependent manner. We show that the chromatin insulator protein CTCF carries a post-translational modification: poly(ADP-ribosyl)ation. Chromatin immunoprecipitation analysis showed that a poly(ADP-ribosyl)ation mark, which exclusively segregates with the maternal allele of the insulator domain in the H19 imprinting control region, requires the bases that are essential for interaction with CTCF. Chromatin immunoprecipitation-on-chip analysis documented that the link between CTCF and poly(ADP-ribosyl)ation extended to more than 140 mouse CTCF target sites. An insulator trap assay showed that the insulator function of most of these CTCF target sites is sensitive to 3-aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase activity. We suggest that poly(ADP-ribosyl)ation imparts chromatin insulator properties to CTCF at both imprinted and nonimprinted loci, which has implications for the regulation of expression domains and their demise in pathological lesions.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Proteínas Represoras/metabolismo , Animales , Factor de Unión a CCCTC , Cromatina/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Impresión Genómica , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Procesamiento Proteico-Postraduccional , ARN Largo no Codificante , ARN no Traducido/genética , Proteínas Represoras/genética , Transcripción Genética
12.
Front Mol Neurosci ; 16: 1185796, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324587

RESUMEN

Introduction: CTCF-related disorder (CRD) is a neurodevelopmental disorder (NDD) caused by monoallelic pathogenic variants in CTCF. The first CTCF variants in CRD cases were documented in 2013. To date, 76 CTCF variants have been further described in the literature. In recent years, due to the increased application of next-generation sequencing (NGS), growing numbers of CTCF variants are being identified, and multiple genotype-phenotype databases cataloging such variants are emerging. Methods: In this study, we aimed to expand the genotypic spectrum of CRD, by cataloging NDD phenotypes associated with reported CTCF variants. Here, we systematically reviewed all known CTCF variants reported in case studies and large-scale exome sequencing cohorts. We also conducted a meta-analysis using public variant data from genotype-phenotype databases to identify additional CTCF variants, which we then curated and annotated. Results: From this combined approach, we report an additional 86 CTCF variants associated with NDD phenotypes that have not yet been described in the literature. Furthermore, we describe and explain inconsistencies in the quality of reported variants, which impairs the reuse of data for research of NDDs and other pathologies. Discussion: From this integrated analysis, we provide a comprehensive and annotated catalog of all currently known CTCF mutations associated with NDD phenotypes, to aid diagnostic applications, as well as translational and basic research.

13.
J Biol Chem ; 286(31): 27378-88, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21659515

RESUMEN

Cancer-testis antigens (CTAs) are normally expressed in testis but are aberrantly expressed in a variety of cancers with varying frequency. More than 100 proteins have been identified as CTA including testes-specific protease 50 (TSP50) and the testis-specific paralogue of CCCTC-binding factor, BORIS (brother of the regulator of imprinted sites). Because many CTAs are considered as excellent targets for tumor immunotherapy, understanding the regulatory mechanisms governing their expression is important. In this study we demonstrate that BORIS is directly responsible for the transcriptional activation of TSP50. We found two BORIS binding sites in the TSP50 promoter that are highly conserved between mouse and human. Mutations of the binding sites resulted in loss of BORIS binding and the ability of BORIS to activate the promoter. However, although expression of BORIS was essential, it was not sufficient for high expression of TSP50 in cancer cells. Further studies showed that binding of BORIS to the target sites was methylation-independent but was diminished by nucleosomal occupancy consistent with the findings that high expression of TSP50 was associated with increased DNase I sensitivity and high BORIS occupancy of the promoter. These findings indicate that BORIS-induced expression of TSP50 is governed by accessibility and binding of BORIS to the promoter. To our knowledge this is the first report of regulated expression of one CTA by another to be validated in a physiological context.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regiones Promotoras Genéticas , Serina Endopeptidasas/genética , Animales , Secuencia de Bases , Sitios de Unión , Cartilla de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Ratones Noqueados , Células 3T3 NIH , Reacción en Cadena de la Polimerasa , Unión Proteica , Homología de Secuencia de Ácido Nucleico , Serina Endopeptidasas/metabolismo
14.
Bioessays ; 32(1): 37-50, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20020479

RESUMEN

The multifunctional zinc-finger protein CCCTC-binding factor (CTCF) is a very strong candidate for the role of coordinating the expression level of coding sequences with their three-dimensional position in the nucleus, apparently responding to a "code" in the DNA itself. Dynamic interactions between chromatin fibers in the context of nuclear architecture have been implicated in various aspects of genome functions. However, the molecular basis of these interactions still remains elusive and is a subject of intense debate. Here we discuss the nature of CTCF-DNA interactions, the CTCF-binding specificity to its binding sites and the relationship between CTCF and chromatin, and we examine data linking CTCF with gene regulation in the three-dimensional nuclear space. We discuss why these features render CTCF a very strong candidate for the role and propose a unifying model, the "CTCF code," explaining the mechanistic basis of how the information encrypted in DNA may be interpreted by CTCF into diverse nuclear functions.


Asunto(s)
Núcleo Celular/genética , Núcleo Celular/metabolismo , Expresión Génica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Humanos , Ratones , Modelos Biológicos , Modelos Genéticos , Nucleosomas/genética , Nucleosomas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/química , Cohesinas
15.
Cell Immunol ; 270(2): 188-97, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21641588

RESUMEN

Here, we analyze for the first time the immunological and therapeutic efficacy of a dendritic cell (DC) vaccine based on a cancer-testis antigen, Brother of regulator of imprinted sites (BORIS), an epigenetically acting tumor-promoting transcription factor. Vaccination of mice with DC loaded with truncated form of BORIS (DC/mBORIS) after 4T1 mammary tumor implantation induced strong anti-cancer immunity, inhibited tumor growth (18.75% of mice remained tumor-free), and dramatically lowered the number of spontaneous clonogenic metastases (50% of mice remained metastases-free). Higher numbers of immune effector CD4 and CD8 T cells infiltrated the tumors of vaccinated mice vs. control animals. Vaccination significantly decreased the number of myeloid-derived suppressor cells (MDSCs) infiltrating the tumor sites, but not MDSCs in the spleens of vaccinated animals. These data suggest that DC-based mBORIS vaccination strategies have significant anti-tumor activity in a therapeutic setting and will be more effective when combined with agents to attenuate tumor-associated immune suppression.


Asunto(s)
Antígenos de Neoplasias/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Proteínas de Unión al ADN/administración & dosificación , Proteínas de Unión al ADN/inmunología , Células Dendríticas/inmunología , Neoplasias Mamarias Experimentales/terapia , Animales , Femenino , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/terapia , Masculino , Neoplasias Mamarias Experimentales/inmunología , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Testículo/inmunología , Vacunación/métodos
16.
J Pathol ; 220(1): 87-96, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19806612

RESUMEN

Telomerase is an RNA-dependent DNA polymerase that synthesizes telomeric DNA. Its activity is not detectable in most somatic cells but it is reactivated during tumorigenesis. In most cancers, the combination of hTERT hypermethylation and hypomethylation of a short promoter region is permissive for low-level hTERT transcription. Activated and malignant lymphocytes express high telomerase activity, through a mechanism that seems methylation-independent. The aim of this study was to determine which mechanism is involved in the enhanced expression of hTERT in lymphoid cells. Our data confirm that in B cells, some T cell lymphomas and non-neoplastic lymph nodes, the hTERT promoter is unmethylated. Binding sites for the B cell-specific transcription factor PAX5 were identified downstream of the ATG translational start site through EMSA and ChIP experiments. ChIP assays indicated that the transcriptional activation of hTERT by PAX5 does not involve repression of CTCF binding. In a B cell lymphoma cell line, siRNA-induced knockdown of PAX5 expression repressed hTERT transcription. Moreover, ectopic expression of PAX5 in a telomerase-negative normal fibroblast cell line was found to be sufficient to activate hTERT expression. These data show that activation of hTERT in telomerase-positive B cells is due to a methylation-independent mechanism in which PAX5 plays an important role.


Asunto(s)
Linfocitos B/enzimología , Factor de Transcripción PAX5/fisiología , Telomerasa/genética , Activación Transcripcional/genética , Secuencia de Bases , Sitios de Unión , Unión Competitiva , Factor de Unión a CCCTC , Islas de CpG/genética , Metilación de ADN , ADN de Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma/genética , Linfoma/metabolismo , Datos de Secuencia Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Factor de Transcripción PAX5/genética , Factor de Transcripción PAX5/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Neoplásico/genética , ARN Interferente Pequeño/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Telomerasa/metabolismo , Células Tumorales Cultivadas
17.
Nat Commun ; 12(1): 3846, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158481

RESUMEN

CTCF is a key organizer of the 3D genome. Its specialized paralog, BORIS, heterodimerizes with CTCF but is expressed only in male germ cells and in cancer states. Unexpectedly, BORIS-null mice have only minimal germ cell defects. To understand the CTCF-BORIS relationship, mouse models with varied CTCF and BORIS levels were generated. Whereas Ctcf+/+Boris+/+, Ctcf+/-Boris+/+, and Ctcf+/+Boris-/- males are fertile, Ctcf+/-Boris-/- (Compound Mutant; CM) males are sterile. Testes with combined depletion of both CTCF and BORIS show reduced size, defective meiotic recombination, increased apoptosis, and malformed spermatozoa. Although CM germ cells exhibit only 25% of CTCF WT expression, chromatin binding of CTCF is preferentially lost from CTCF-BORIS heterodimeric sites. Furthermore, CM testes lose the expression of a large number of spermatogenesis genes and gain the expression of developmentally inappropriate genes that are "toxic" to fertility. Thus, a combined action of CTCF and BORIS is required to both repress pre-meiotic genes and activate post-meiotic genes for a complete spermatogenesis program.


Asunto(s)
Factor de Unión a CCCTC/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Espermatogénesis/genética , Testículo/metabolismo , Animales , Factor de Unión a CCCTC/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Infertilidad Masculina/genética , Masculino , Meiosis/genética , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Unión Proteica , RNA-Seq/métodos , Recombinación Genética , Espermatozoides/metabolismo
18.
Dev Biol ; 328(2): 518-28, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19210964

RESUMEN

Insulators or chromatin boundary elements are defined by their ability to block transcriptional activation by an enhancer and to prevent the spread of active or silenced chromatin. Recent studies have increasingly suggested that insulator proteins play a role in large-scale genome organization. To better understand insulator function on the global scale, we conducted a genome-wide analysis of the binding sites for the insulator protein CTCF in Drosophila by Chromatin Immunoprecipitation (ChIP) followed by a tiling-array analysis. The analysis revealed CTCF binding to many known domain boundaries within the Abd-B gene of the BX-C including previously characterized Fab-8 and MCP insulators, and the Fab-6 region. Based on this finding, we characterized the Fab-6 insulator element. In genome-wide analysis, we found that dCTCF-binding sites are often situated between closely positioned gene promoters, consistent with the role of CTCF as an insulator protein. Importantly, CTCF tends to bind gene promoters just upstream of transcription start sites, in contrast to the predicted binding sites of the insulator protein Su(Hw). These findings suggest that CTCF plays more active roles in regulating gene activity and it functions differently from other insulator proteins in organizing the Drosophila genome.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila/genética , Genoma de los Insectos , Proteínas Represoras/genética , Animales , Factor de Unión a CCCTC , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/fisiología , Drosophila/embriología , Drosophila/fisiología , Proteínas de Drosophila/fisiología , Estudio de Asociación del Genoma Completo , Regiones Promotoras Genéticas , Proteínas Represoras/fisiología
19.
Mol Cell Biol ; 27(7): 2636-47, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17242189

RESUMEN

Paternal deletion of the imprinting control region (ICR) KvDMR1 results in loss of expression of the Kcnq1ot1 noncoding RNA and derepression of flanking paternally silenced genes. Truncation of Kcnq1ot1 also results in the loss of imprinted expression of these genes in most cases, demonstrating a role for the RNA or its transcription in gene silencing. However, enhancer-blocking studies indicate that KvDMR1 also contains chromatin insulator or silencer activity. In this report we demonstrate by electrophoretic mobility shift assays and chromatin immunoprecipitation the existence of two CTCF binding sites within KvDMR1 that are occupied in vivo only on the unmethylated paternally derived allele. Methylation interference and mutagenesis allowed the precise mapping of protein-DNA contact sites for CTCF within KvDMR1. Using a luciferase reporter assay, we mapped the putative transcriptional promoter for Kcnq1ot1 upstream and to a site functionally separable from enhancer-blocking activity and CTCF binding sites. Luciferase reporter assays also suggest the presence of an additional cis-acting element in KvDMR1 upstream of the putative promoter that can function as an enhancer. These results suggest that the KvDMR1 ICR consists of multiple, independent cis-acting modules. Dissection of KvDMR1 into its functional components should help elucidate the mechanism of its function in vivo.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Impresión Genómica , Proteínas Represoras/metabolismo , Alelos , Animales , Secuencia de Bases , Sitios de Unión , Factor de Unión a CCCTC , Inmunoprecipitación de Cromatina , Islas de CpG , Metilación de ADN , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Elementos de Facilitación Genéticos , Femenino , Humanos , Células Jurkat , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , ARN no Traducido/genética , ARN no Traducido/metabolismo , Proteínas Represoras/genética , Sitio de Iniciación de la Transcripción
20.
Mol Cell Biol ; 27(5): 1631-48, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17210645

RESUMEN

CTCF is a transcription factor with highly versatile functions ranging from gene activation and repression to the regulation of insulator function and imprinting. Although many of these functions rely on CTCF-DNA interactions, it is an emerging realization that CTCF-dependent molecular processes involve CTCF interactions with other proteins. In this study, we report the association of a subpopulation of CTCF with the RNA polymerase II (Pol II) protein complex. We identified the largest subunit of Pol II (LS Pol II) as a protein significantly colocalizing with CTCF in the nucleus and specifically interacting with CTCF in vivo and in vitro. The role of CTCF as a link between DNA and LS Pol II has been reinforced by the observation that the association of LS Pol II with CTCF target sites in vivo depends on intact CTCF binding sequences. "Serial" chromatin immunoprecipitation (ChIP) analysis revealed that both CTCF and LS Pol II were present at the beta-globin insulator in proliferating HD3 cells but not in differentiated globin synthesizing HD3 cells. Further, a single wild-type CTCF target site (N-Myc-CTCF), but not the mutant site deficient for CTCF binding, was sufficient to activate the transcription from the promoterless reporter gene in stably transfected cells. Finally, a ChIP-on-ChIP hybridization assay using microarrays of a library of CTCF target sites revealed that many intergenic CTCF target sequences interacted with both CTCF and LS Pol II. We discuss the possible implications of our observations with respect to plausible mechanisms of transcriptional regulation via a CTCF-mediated direct link of LS Pol II to the DNA.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Genoma Humano , ARN Polimerasa II/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Neoplasias de la Mama/patología , Factor de Unión a CCCTC , Línea Celular Tumoral , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/química , Genes Reporteros , Células HeLa , Humanos , Inmunohistoquímica , Células K562 , Ratones , Células 3T3 NIH , Análisis de Secuencia por Matrices de Oligonucleótidos , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/genética , Proteínas Represoras/química , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA