Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(1): 4-21, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37993417

RESUMEN

Several cancer core regulatory circuitries (CRCs) depend on the sustained generation of DNA accessibility by SWI/SNF chromatin remodelers. However, the window when SWI/SNF is acutely essential in these settings has not been identified. Here we used neuroblastoma (NB) cells to model and dissect the relationship between cell-cycle progression and SWI/SNF ATPase activity. We find that SWI/SNF inactivation impairs coordinated occupancy of non-pioneer CRC members at enhancers within 1 hour, rapidly breaking their autoregulation. By precisely timing inhibitor treatment following synchronization, we show that SWI/SNF is dispensable for survival in S and G2/M, but becomes acutely essential only during G1 phase. We furthermore developed a new approach to analyze the oscillating patterns of genome-wide DNA accessibility across the cell cycle, which revealed that SWI/SNF-dependent CRC binding sites are enriched at enhancers with peak accessibility during G1 phase, where they activate genes involved in cell-cycle progression. SWI/SNF inhibition strongly impairs G1-S transition and potentiates the ability of retinoids used clinically to induce cell-cycle exit. Similar cell-cycle effects in diverse SWI/SNF-addicted settings highlight G1-S transition as a common cause of SWI/SNF dependency. Our results illustrate that deeper knowledge of the temporal patterns of enhancer-related dependencies may aid the rational targeting of addicted cancers.


Cancer cells driven by runaway transcription factor networks frequently depend on the cellular machinery that promotes DNA accessibility. For this reason, recently developed small molecules that impair SWI/SNF (or BAF) chromatin remodeling activity have been under active evaluation as anti-cancer agents. However, exactly when SWI/SNF activity is essential in dependent cancers has remained unknown. By combining live-cell imaging and genome-wide profiling in neuroblastoma cells, Cermakova et al. discover that SWI/SNF activity is needed for survival only during G1 phase of the cell cycle. The authors reveal that in several cancer settings, dependency on SWI/SNF arises from the need to reactivate factors involved in G1-S transition. Because of this role, authors find that SWI/SNF inhibition potentiates cell-cycle exit by retinoic acid.


Asunto(s)
Fase G1 , Neoplasias , Factores de Transcripción , Humanos , Ciclo Celular , Cromatina/genética , Ensamble y Desensamble de Cromatina , ADN , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Elementos de Facilitación Genéticos
2.
BMC Genet ; 18(1): 40, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28499390

RESUMEN

BACKGROUND: Two key questions in understanding the genetic control of behaviors are: what genes are involved and how these genes interact. To answer these questions at a systems level, we conducted high-content profiling of Drosophila larval locomotor behaviors for over 100 genotypes. RESULTS: We studied 69 genes whose C. elegans orthologs were neuronal signalling genes with significant locomotor phenotypes, and conducted RNAi with ubiquitous, pan-neuronal, or motor-neuronal Gal4 drivers. Inactivation of 42 genes, including the nicotinic acetylcholine receptors nAChRα1 and nAChRα3, in the neurons caused significant movement defects. Bioinformatic analysis suggested 81 interactions among these genes based on phenotypic pattern similarities. Comparing the worm and fly data sets, we found that these genes were highly conserved in having neuronal expressions and locomotor phenotypes. However, the genetic interactions were not conserved for ubiquitous profiles, and may be mildly conserved for the neuronal profiles. Unexpectedly, our data also revealed a possible motor-neuronal control of body size, because inactivation of Rdl and Gαo in the motor neurons reduced the larval body size. Overall, these data established a framework for further exploring the genetic control of Drosophila larval locomotion. CONCLUSIONS: High content, quantitative phenotyping of larval locomotor behaviours provides a framework for system-level understanding of the gene networks underlying such behaviours.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Neuronas/metabolismo , Animales , Conducta Animal , Drosophila melanogaster/crecimiento & desarrollo , Epistasis Genética , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Locomoción , Masculino , Neuronas/citología , Interferencia de ARN , Transducción de Señal
3.
Cancer Res ; 83(7): 983-996, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36662812

RESUMEN

In acute myeloid leukemia (AML), SWI/SNF chromatin remodeling complexes sustain leukemic identity by driving high levels of MYC. Previous studies have implicated the hematopoietic transcription factor PU.1 (SPI1) as an important target of SWI/SNF inhibition, but PU.1 is widely regarded to have pioneer-like activity. As a result, many questions have remained regarding the interplay between PU.1 and SWI/SNF in AML as well as normal hematopoiesis. Here we found that PU.1 binds to most of its targets in a SWI/SNF-independent manner and recruits SWI/SNF to promote accessibility for other AML core regulatory factors, including RUNX1, LMO2, and MEIS1. SWI/SNF inhibition in AML cells reduced DNA accessibility and binding of these factors at PU.1 sites and redistributed PU.1 to promoters. Analysis of nontumor hematopoietic cells revealed that similar effects also impair PU.1-dependent B-cell and monocyte populations. Nevertheless, SWI/SNF inhibition induced profound therapeutic response in an immunocompetent AML mouse model as well as in primary human AML samples. In vivo, SWI/SNF inhibition promoted leukemic differentiation and reduced the leukemic stem cell burden in bone marrow but also induced leukopenia. These results reveal a variable therapeutic window for SWI/SNF blockade in AML and highlight important off-tumor effects of such therapies in immunocompetent settings. SIGNIFICANCE: Disruption of PU.1-directed enhancer programs upon SWI/SNF inhibition causes differentiation of AML cells and induces leukopenia of PU.1-dependent B cells and monocytes, revealing the on- and off-tumor effects of SWI/SNF blockade.


Asunto(s)
Leucemia Mieloide Aguda , Leucopenia , Animales , Ratones , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Médula Ósea/patología , Regiones Promotoras Genéticas , Diferenciación Celular , Leucopenia/genética
4.
Methods Mol Biol ; 2144: 131-144, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410031

RESUMEN

The gut microbiome is an important driver of host physiology and development. Altered abundance or membership of this microbe community can influence host health and disease progression, including the determination of host lifespan and healthspan. Here, we describe a robust pipeline to measure microbiome abundance and composition in the C. elegans gut that can be applied to examine the role of the microbiome on host aging or other physiologic processes.


Asunto(s)
Envejecimiento/genética , Caenorhabditis elegans/microbiología , Microbioma Gastrointestinal/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Longevidad/genética
5.
Genetics ; 206(3): 1469-1478, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28495959

RESUMEN

It is crucial for animal survival to detect dangers such as predators. A good indicator of dangers is injury of conspecifics. Here we show that fluids released from injured conspecifics invoke acute avoidance in both free-living and parasitic nematodes. Caenorhabditis elegans avoids extracts from closely related nematode species but not fruit fly larvae. The worm extracts have no impact on animal lifespan, suggesting that the worm extract may function as an alarm instead of inflicting physical harm. Avoidance of the worm extract requires the function of a cGMP signaling pathway that includes the cGMP-gated channel TAX-2/TAX-4 in the amphid sensory neurons ASI and ASK. Genetic evidence indicates that the avoidance behavior is modulated by the neurotransmitters GABA and serotonin, two common targets of anxiolytic drugs. Together, these data support a model that nematodes use a nematode-specific alarm pheromone to detect conspecific injury.


Asunto(s)
Caenorhabditis elegans/metabolismo , Quimiotaxis , Reacción de Fuga , Feromonas/metabolismo , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Feromonas/farmacología , Células Receptoras Sensoriales/metabolismo , Serotonina/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA