RESUMEN
By characterizing the trajectories of antibiotic resistance gene transfer in bacterial communities such as the gut microbiome, we will better understand the factors that influence this spread of resistance. Our aim was to investigate the host network of a multidrug resistance broad-host-range plasmid in the culturable gut microbiome of zebrafish. This was done through in vitro and in vivo conjugation experiments with Escherichia coli as the donor of the plasmid pB10::gfp When this donor was mixed with the extracted gut microbiome, only transconjugants of Aeromonas veronii were detected. In separate matings between the same donor and four prominent isolates from the gut microbiome, the plasmid transferred to two of these four isolates, A. veronii and Plesiomonas shigelloides, but not to Shewanella putrefaciens and Vibrio mimicus When these A. veronii and P. shigelloides transconjugants were the donors in matings with the same four isolates, the plasmid now also transferred from A. veronii to S. putrefaciensP. shigelloides was unable to donate the plasmid, and V. mimicus was unable to acquire it. Finally, when the E. coli donor was added in vivo to zebrafish through their food, plasmid transfer was observed in the gut, but only to Achromobacter, a rare member of the gut microbiome. This work shows that the success of plasmid-mediated antibiotic resistance spread in a gut microbiome depends on the donor-recipient species combinations and therefore their spatial arrangement. It also suggests that rare gut microbiome members should not be ignored as potential reservoirs of multidrug resistance plasmids from food.IMPORTANCE To understand how antibiotic resistance plasmids end up in human pathogens, it is crucial to learn how, where, and when they are transferred and maintained in members of bacterial communities such as the gut microbiome. To gain insight into the network of plasmid-mediated antibiotic resistance sharing in the gut microbiome, we investigated the transferability and maintenance of a multidrug resistance plasmid among the culturable bacteria of the zebrafish gut. We show that the success of plasmid-mediated antibiotic resistance spread in a gut microbiome can depend on which species are involved, as some are important nodes in the plasmid-host network and others are dead ends. Our findings also suggest that rare gut microbiome members should not be ignored as potential reservoirs of multidrug resistance plasmids from food.
Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Microbioma Gastrointestinal/genética , Pez Cebra/microbiología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Femenino , Masculino , PlásmidosRESUMEN
The World Health Organization has declared the emergence of antibiotic resistance to be a global threat to human health. Broad-host-range plasmids have a key role in causing this health crisis because they transfer multiple resistance genes to a wide range of bacteria. To limit the spread of antibiotic resistance, we need to gain insight into the mechanisms by which the host range of plasmids evolves. Although initially unstable plasmids have been shown to improve their persistence through evolution of the plasmid, the host, or both, the means by which this occurs are poorly understood. Here, we sought to identify the underlying genetic basis of expanded plasmid host-range and increased persistence of an antibiotic resistance plasmid using a combined experimental-modeling approach that included whole-genome resequencing, molecular genetics and a plasmid population dynamics model. In nine of the ten previously evolved clones, changes in host and plasmid each slightly improved plasmid persistence, but their combination resulted in a much larger improvement, which indicated positive epistasis. The only genetic change in the plasmid was the acquisition of a transposable element from a plasmid native to the Pseudomonas host used in these studies. The analysis of genetic deletions showed that the critical genes on this transposon encode a putative toxin-antitoxin (TA) and a cointegrate resolution system. As evolved plasmids were able to persist longer in multiple naïve hosts, acquisition of this transposon also expanded the plasmid's host range, which has important implications for the spread of antibiotic resistance.
Asunto(s)
Farmacorresistencia Microbiana/genética , Evolución Molecular , Plásmidos/genética , Pseudomonas/genética , Elementos Transponibles de ADN/genética , Especificidad del Huésped/genética , Interacciones Huésped-Patógeno/genética , Humanos , Pseudomonas/efectos de los fármacos , Pseudomonas/patogenicidad , Análisis de Secuencia de ADNRESUMEN
Antibiotic selection drives adaptation of antibiotic resistance plasmids to new bacterial hosts, but the molecular mechanisms are still poorly understood. We previously showed that a broad-host-range plasmid was poorly maintained in Shewanella oneidensis, but rapidly adapted through mutations in the replication initiation gene trfA1. Here we examined if these mutations reduced the fitness cost of TrfA1, and whether this was due to changes in interaction with the host's DNA helicase DnaB. The strains expressing evolved TrfA1 variants showed a higher growth rate than those expressing ancestral TrfA1. The evolved TrfA1 variants showed a lower affinity to the helicase than ancestral TrfA1 and were no longer able to activate the helicase at the oriV without host DnaA. Moreover, persistence of the ancestral plasmid was increased upon overexpression of DnaB. Finally, the evolved TrfA1 variants generated higher plasmid copy numbers than ancestral TrfA1. The findings suggest that ancestral plasmid instability can at least partly be explained by titration of DnaB by TrfA1. Thus under antibiotic selection resistance plasmids can adapt to a novel bacterial host through partial loss of function mutations that simultaneously increase plasmid copy number and decrease unfavorably high affinity to one of the hosts' essential proteins.
Asunto(s)
Proteínas de Escherichia coli/metabolismo , Plásmidos/metabolismo , Shewanella/virología , ADN Helicasas/metabolismo , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , AdnB Helicasas/genética , AdnB Helicasas/metabolismo , Farmacorresistencia Microbiana , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/virología , Proteínas de Escherichia coli/genética , Plásmidos/genética , Shewanella/genéticaRESUMEN
The maintenance of a plasmid in the absence of selection for plasmid-borne genes is not guaranteed. However, plasmid persistence can evolve under selective conditions. Studying the molecular mechanisms behind the evolution of plasmid persistence is key to understanding how plasmids are maintained under nonselective conditions. Given the current crisis of rapid antibiotic resistance spread by multidrug resistance plasmids, this insight is of high medical relevance. The conventional method for monitoring plasmid persistence (i.e., the fraction of plasmid-containing cells in a population over time) is based on cultivation and involves differentiating colonies of plasmid-containing and plasmid-free cells on agar plates. However, this technique is time-consuming and does not easily lend itself to high-throughput applications. Here, we present flow cytometry (FCM) and real-time quantitative PCR (qPCR) as alternative tools for monitoring plasmid persistence. For this, we measured the persistence of a model plasmid, pB10::gfp, in three Pseudomonas hosts and in known mixtures of plasmid-containing and -free cells. We also compared three performance criteria: dynamic range, resolution, and variance. Although not without exceptions, both techniques generated estimates of overall plasmid loss rates that were rather similar to those generated by the conventional plate count (PC) method. They also were able to resolve differences in loss rates between artificial plasmid persistence assays. Finally, we briefly discuss the advantages and disadvantages for each technique and conclude that, overall, both FCM and real-time qPCR are suitable alternatives to cultivation-based methods for routine measurement of plasmid persistence, thereby opening avenues for high-throughput analyses.
Asunto(s)
Citometría de Flujo/métodos , Genética Microbiana/métodos , Plásmidos/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Pseudomonas/genética , Coloración y EtiquetadoRESUMEN
Geobacillus thermoglucosidasius is a Gram-positive, thermophilic bacterium capable of ethanologenic fermentation of both C5 and C6 sugars and may have possible use for commercial bioethanol production [Tang et al., 2009; Taylor et al. (2009) Trends Biotechnol 27(7): 398-405]. Little is known about the physiological changes that accompany a switch from aerobic (high redox) to microaerobic/fermentative (low redox) conditions in thermophilic organisms. The changes in the central metabolic pathways in response to a switch in redox potential were analyzed using quantitative real-time PCR and proteomics. During low redox (fermentative) states, results indicated that glycolysis was uniformly up-regulated, the Krebs (tricarboxylic acid or TCA) cycle non-uniformly down-regulated and that there was little to no change in the pentose phosphate pathway. Acetate accumulation was accounted for by strong down-regulation of the acetate CoA ligase gene (acs) in addition to up-regulation of the pta and ackA genes (involved in acetate production), thus conserving ATP while reducing flux through the TCA cycle. Substitution of an NADH dehydrogenase (down-regulated) by an up-regulated NADH:FAD oxidoreductase and up-regulation of an ATP synthase subunit, alongside the observed shifts in the TCA cycle, suggested that an oxygen-scavenging electron transport chain likely remained active during low redox conditions. Together with the observed up-regulation of a glyoxalase and down-regulation of superoxide dismutase, thought to provide protection against the accumulation of toxic phosphorylated glycolytic intermediates and reactive oxygen species, respectively, the changes observed in G. thermoglucosidasius NCIMB 11955 under conditions of aerobic-to-microaerobic switching were consistent with responses to low pO(2) stress.
Asunto(s)
Adenosina Trifosfato/biosíntesis , Fermentación , Geobacillus/metabolismo , Aerobiosis , Cromatografía Líquida de Alta Presión , Ciclo del Ácido Cítrico , Electroforesis en Gel Bidimensional , Glucólisis , Oxidación-Reducción , Vía de Pentosa Fosfato , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Plasmids of IncQ-family are distinguished by having a unique strand-displacement mechanism of replication that is capable of functioning in a wide variety of bacterial hosts. In addition, these plasmids are highly mobilizable and therefore very promiscuous. Common features of the replicons have been used to identify IncQ-family plasmids in DNA sequence databases and in this way several unstudied plasmids have been compared to more well-studied IncQ plasmids. We propose that IncQ plasmids can be divided into four subgroups based on a number of mutually supportive criteria. The most important of these are the amino acid sequences of their three essential replication proteins and the observation that the replicon of each subgroup has become fused to four different lineages of mobilization genes. This review of IncQ-family plasmid diversity has highlighted several events in the evolution of these plasmids and raised several questions for further research.
Asunto(s)
Evolución Biológica , Variación Genética , Plásmidos/genética , Origen de Réplica/genética , Replicón/genéticaRESUMEN
Plasmids pRAS3.1 and pRAS3.2 are natural variants of the IncQ-2 plasmid family, that except for two differences, have identical plasmid backbones. Plasmid pRAS3.1 has four 22-bp iterons in its oriV region, while pRAS3.2 has only three 6-bp repeats and pRAS3.1 has five 6-bp repeats in the promoter region of the mobB-mobA/repB genes and pRAS3.2 has only four. In previous work, we showed that the overall effect of these differences was that when the plasmid was in an Escherichia coli host, the copy numbers of pRAS3.1 and pRAS3.2 were approximately 41 and 30, respectively. As pRAS3.1 and pRAS3.2 are likely to have arisen from the same ancestor, we addressed the question of whether one of the variants had an evolutionary advantage over the other. By constructing a set of identical plasmids with the number of 22-bp iterons varying from three to seven, it was found that plasmids with four or five iterons displaced plasmids with three iterons even though they had lower copy numbers. Furthermore, the metabolic load that the plasmids placed on E. coli host cells compared with plasmid-free cells increased with copy number from 10.9% at a copy number of 59 to 2.6% at a copy number of 15. Plasmid pRAS3.1 with four 22-bp iterons was able to displace pRAS3.2 with three iterons when both were coresident in the same host. However, the lower-copy-number pRAS3.2 placed 2.8% less of a metabolic burden on an E. coli host population, and therefore, pRAS3.2 has a competitive advantage over pRAS3.1 at the population level, as pRAS3.2-containing cells would be expected to outgrow pRAS3.1-containing cells.
Asunto(s)
ADN Bacteriano/genética , Escherichia coli/genética , Plásmidos , Origen de Réplica , Replicación del ADN , Escherichia coli/metabolismo , Orden Génico , Genes BacterianosRESUMEN
Plasmids pRAS3.1 and pRAS3.2 are two closely related, natural variants of the IncQ-2 plasmid family that have identical plasmid backbones except for two differences. Plasmid pRAS3.1 has five 6-bp repeat sequences in the promoter region of the mobB gene and four 22-bp iterons in its oriV region, whereas pRAS3.2 has only four 6-bp repeats and three 22-bp iterons. Plasmid pRAS3.1 was found to have a higher copy number than pRAS3.2, and we show that the extra 6-bp repeat results in an increase in mobB and downstream mobA/repB expression. Placement of repB (primase) behind an arabinose-inducible promoter in trans resulted in an increase in repB expression and an approximately twofold increase in the copy number of plasmids with identical numbers of 22-bp iterons. The pRAS3 plasmids were shown to have a previously unrecognized toxin-antitoxin plasmid stability module within their replicons. The ability of the pRAS3 plasmids to mobilize the oriT regions of two other plasmids of the IncQ-2 family, pTF-FC2 and pTC-F14, suggested that the mobilization proteins pRAS3 are relaxed and can mobilize oriT regions with substantially different sequences. Plasmids pRAS3.1 and pRAS3.2 were highly incompatible with plasmids pTF-FC2 and pTC-F14, and this incompatibility was removed on inactivation of an open reading frame situated downstream of the mobCDE mobilization genes rather than being due to the 22-bp oriV-associated iterons. We propose that the pRAS3 plasmids represent a third, gamma incompatibility group within the IncQ-2 family plasmids.
Asunto(s)
Aeromonas salmonicida/metabolismo , Proteínas Bacterianas/metabolismo , Variación Genética , Plásmidos/clasificación , Aeromonas salmonicida/genética , Proteínas Bacterianas/genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica/fisiología , FilogeniaRESUMEN
Horizontal gene transfer mediated by broad-host-range plasmids is an important mechanism of antibiotic resistance spread. While not all bacteria maintain plasmids equally well, plasmid persistence can improve over time, yet no general evolutionary mechanisms have emerged. Our goal was to identify these mechanisms and to assess if adaptation to one plasmid affects the permissiveness to others. We experimentally evolved Pseudomonas sp. H2 containing multidrug resistance plasmid RP4, determined plasmid persistence and cost using a joint experimental-modelling approach, resequenced evolved clones, and reconstructed key mutations. Plasmid persistence improved in fewer than 600 generations because the fitness cost turned into a benefit. Improved retention of naive plasmids indicated that the host evolved towards increased plasmid permissiveness. Key chromosomal mutations affected two accessory helicases and the RNA polymerase ß-subunit. Our and other findings suggest that poor plasmid persistence can be caused by a high cost involving helicase-plasmid interactions that can be rapidly ameliorated.
Asunto(s)
Farmacorresistencia Microbiana/genética , Transferencia de Gen Horizontal , Mutación , Plásmidos/efectos de los fármacos , Pseudomonas/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Plásmidos/genética , Pseudomonas/genéticaRESUMEN
We report the draft genome sequence of Pseudomonas sp. nov. H2, isolated from creek sediment in Moscow, ID, USA. The strain is most closely related to Pseudomonas putida. However, it has a slightly smaller genome that appears to have been impacted by horizontal gene transfer and poorly maintains IncP-1 plasmids.
RESUMEN
We report the draft genome sequence of Pseudomonas moraviensis R28-S, isolated from the municipal wastewater treatment plant of Moscow, ID. The strain carries a native mercury resistance plasmid, poorly maintains introduced IncP-1 antibiotic resistance plasmids, and has been useful for studying the evolution of plasmid host range and stability.