Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry ; 53(5): 862-71, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24447265

RESUMEN

PIR1 is an atypical dual-specificity phosphatase (DSP) that dephosphorylates RNA with a higher specificity than phosphoproteins. Here we report the atomic structure of a catalytically inactive mutant (C152S) of the human PIR1 phosphatase core (PIR1-core, residues 29-205), refined at 1.20 Šresolution. PIR1-core shares structural similarities with DSPs related to Vaccinia virus VH1 and with RNA 5'-phosphatases such as the baculovirus RNA triphosphatase and the human mRNA capping enzyme. The PIR1 active site cleft is wider and deeper than that of VH1 and contains two bound ions: a phosphate trapped above the catalytic cysteine C152 exemplifies the binding mode expected for the γ-phosphate of RNA, and ∼6 Šaway, a chloride ion coordinates the general base R158. Two residues in the PIR1 phosphate-binding loop (P-loop), a histidine (H154) downstream of C152 and an asparagine (N157) preceding R158, make close contacts with the active site phosphate, and their nonaliphatic side chains are essential for phosphatase activity in vitro. These residues are conserved in all RNA 5'-phosphatases that, analogous to PIR1, lack a "general acid" residue. Thus, a deep active site crevice, two active site ions, and conserved P-loop residues stabilizing the γ-phosphate of RNA are defining features of atypical DSPs that specialize in dephosphorylating 5'-RNA.


Asunto(s)
Fosfatasas de Especificidad Dual/química , Dominio Catalítico , Cristalografía por Rayos X , Fosfatasas de Especificidad Dual/genética , Humanos , Cinética , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estabilidad Proteica
2.
Biochemistry ; 52(5): 938-48, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23298255

RESUMEN

Regulation of p53 phosphorylation is critical to control its stability and biological activity. Dual-specificity phosphatase 26 (DUSP26) is a brain phosphatase highly overexpressed in neuroblastoma, which has been implicated in dephosphorylating phospho-Ser20 and phospho-Ser37 in the p53 transactivation domain. In this paper, we report the 1.68 Å crystal structure of a catalytically inactive mutant (Cys152Ser) of DUSP26 lacking the first 60 N-terminal residues (ΔN60-C/S-DUSP26). This structure reveals the architecture of a dual-specificity phosphatase domain related in structure to Vaccinia virus VH1. DUSP26 adopts a closed conformation of the protein tyrosine phosphatase (PTP)-binding loop, which results in an unusually shallow active site pocket and buried catalytic cysteine. A water molecule trapped inside the PTP-binding loop makes close contacts both with main chain and with side chain atoms. The hydrodynamic radius (R(H)) of ΔN60-C/S-DUSP26 measured from velocity sedimentation analysis (R(H) ∼ 22.7 Å) and gel filtration chromatography (R(H) ∼ 21.0 Å) is consistent with an ∼18 kDa globular monomeric protein. Instead in crystal, ΔN60-C/S-DUSP26 is more elongated (R(H) ∼ 37.9 Å), likely because of the extended conformation of C-terminal helix α9, which swings away from the phosphatase core to generate a highly basic surface. As in the case of phosphatase MKP-4, we propose that a substrate-induced conformational change, possibly involving rearrangement of helix α9 with respect to the phosphatase core, allows DUSP26 to adopt a catalytically active conformation. The structural characterization of DUSP26 presented in this paper provides the first atomic insight into this disease-associated phosphatase.


Asunto(s)
Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/química , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Proteína p53 Supresora de Tumor/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Fosfatasas de Especificidad Dual/metabolismo , Activación Enzimática , Humanos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Modelos Moleculares , Neuroblastoma/enzimología , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína , Eliminación de Secuencia , Virus Vaccinia/química , Virus Vaccinia/enzimología
3.
Proc Natl Acad Sci U S A ; 106(24): 9661-6, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19478065

RESUMEN

The delivery of virulence factors into host cells through type III secretion systems is essential for enterobacterial pathogenesis. Molecular chaperones bind specifically to virulence factors in the bacterial cytosol before secretion. Invasion plasmid gene C (IpgC) is a chaperone that binds 2 essential virulence factors of Shigella: invasion plasmid antigens (Ipa) B and C. Here, we report the crystal structure of IpgC alone and in complex with the chaperone binding domain (CBD) of IpaB. The chaperone captures the CBD in an extended conformation that is stabilized by conserved residues lining the cleft. Analysis of the cocrystal structure reveals a sequence motif that is functional in the IpaB translocator class from different bacteria as determined by isothermal titration calorimetry. Our results show how translocators are chaperoned and may allow the design of inhibitors of enterobacterial diseases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Chaperonas Moleculares/química , Conformación Proteica , Homología de Secuencia de Aminoácido , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidad
4.
J Biol Chem ; 285(51): 39965-75, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20937829

RESUMEN

Type III secretion systems (TTSSs) utilized by enteropathogenic bacteria require the presence of small, acidic virulence-associated chaperones for effective host cell infection. We adopted a combination of biochemical and cellular techniques to define the chaperone binding domains (CBDs) in the translocators IpaB and IpaC associated with the chaperone IpgC from Shigella flexneri. We identified a novel CBD in IpaB and furthermore precisely mapped the boundaries of the CBDs in both translocator proteins. In IpaC a single binding domain associates with IpgC. In IpaB, we show that the binding of the newly characterized CBD is essential in maintaining the ternary arrangement of chaperone-translocator complex. This hitherto unknown function is reflected in the co-crystal structure as well, with an IpgC dimer bound to an IpaB fragment comprising both CBDs. Moreover, in the absence of this novel CBD the IpaB/IpgC complex aggregates. This dual-recognition of a domain in the protein by the chaperone in facilitating the correct chaperone-substrate organization describes a new function for the TTSS associated chaperone-substrate complexes.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Shigella flexneri/metabolismo , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Operón/fisiología , Mapeo Peptídico/métodos , Unión Proteica , Multimerización de Proteína/fisiología , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Shigella flexneri/química , Shigella flexneri/genética
5.
J Mol Biol ; 427(20): 3285-3299, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26301600

RESUMEN

Packaging of viral genomes inside empty procapsids is driven by a powerful ATP-hydrolyzing motor, formed in many double-stranded DNA viruses by a complex of a small terminase (S-terminase) subunit and a large terminase (L-terminase) subunit, transiently docked at the portal vertex during genome packaging. Despite recent progress in elucidating the structure of individual terminase subunits and their domains, little is known about the architecture of an assembled terminase complex. Here, we describe a bacterial co-expression system that yields milligram quantities of the S-terminase:L-terminase complex of the Salmonella phage P22. In vivo assembled terminase complex was affinity-purified and stabilized by addition of non-hydrolyzable ATP, which binds specifically to the ATPase domain of L-terminase. Mapping studies revealed that the N-terminus of L-terminase ATPase domain (residues 1-58) contains a minimal S-terminase binding domain sufficient for stoichiometric association with residues 140-162 of S-terminase, the L-terminase binding domain. Hydrodynamic analysis by analytical ultracentrifugation sedimentation velocity and native mass spectrometry revealed that the purified terminase complex consists predominantly of one copy of the nonameric S-terminase bound to two equivalents of L-terminase (1S-terminase:2L-terminase). Direct visualization of this molecular assembly in negative-stained micrographs yielded a three-dimensional asymmetric reconstruction that resembles a "nutcracker" with two L-terminase protomers projecting from the C-termini of an S-terminase ring. This is the first direct visualization of a purified viral terminase complex analyzed in the absence of DNA and procapsid.


Asunto(s)
Bacteriófago P22/metabolismo , Empaquetamiento del ADN/fisiología , ADN Viral/metabolismo , Endodesoxirribonucleasas/ultraestructura , Subunidades de Proteína/metabolismo , Ensamble de Virus/fisiología , Cristalografía por Rayos X , Endodesoxirribonucleasas/metabolismo , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA