Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
3.
J Biol Chem ; 299(9): 105185, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37611830

RESUMEN

A substantial body of evidence has established the contributions of both mitochondrial dynamics and lipid metabolism to the pathogenesis of diabetic kidney disease (DKD). However, the precise interplay between these two key metabolic regulators of DKD is not fully understood. Here, we uncover a link between mitochondrial dynamics and lipid metabolism by investigating the role of carbohydrate-response element-binding protein (ChREBP), a glucose-responsive transcription factor and a master regulator of lipogenesis, in kidney podocytes. We find that inducible podocyte-specific knockdown of ChREBP in diabetic db/db mice improves key biochemical and histological features of DKD in addition to significantly reducing mitochondrial fragmentation. Because of the critical role of ChREBP in lipid metabolism, we interrogated whether and how mitochondrial lipidomes play a role in ChREBP-mediated mitochondrial fission. Our findings suggest a key role for a family of ether phospholipids in ChREBP-induced mitochondrial remodeling. We find that overexpression of glyceronephosphate O-acyltransferase, a critical enzyme in the biosynthesis of plasmalogens, reverses the protective phenotype of ChREBP deficiency on mitochondrial fragmentation. Finally, our data also points to Gnpat as a direct transcriptional target of ChREBP. Taken together, our results uncover a distinct mitochondrial lipid signature as the link between ChREBP-induced mitochondrial dynamics and progression of DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Ratones , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/metabolismo , Regulación de la Expresión Génica , Riñón/metabolismo , Lipidómica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Biol Chem ; 295(47): 15840-15852, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32467232

RESUMEN

Long noncoding RNAs (lncRNAs) have been shown to play key roles in a variety of biological activities of the cell. However, less is known about how lncRNAs respond to environmental cues and what transcriptional mechanisms regulate their expression. Studies from our laboratory have shown that the lncRNA Tug1 (taurine upregulated gene 1) is crucial for the progression of diabetic kidney disease, a major microvascular complication of diabetes. Using a combination of proximity labeling with the engineered soybean ascorbate peroxidase (APEX2), ChIP-qPCR, biotin-labeled oligonucleotide pulldown, and classical promoter luciferase assays in kidney podocytes, we extend our initial observations in the current study and now provide a detailed analysis on a how high-glucose milieu downregulates Tug1 expression in podocytes. Our results revealed an essential role for the transcription factor carbohydrate response element binding protein (ChREBP) in controlling Tug1 transcription in the podocytes in response to increased glucose levels. Along with ChREBP, other coregulators, including MAX dimerization protein (MLX), MAX dimerization protein 1 (MXD1), and histone deacetylase 1 (HDAC1), were enriched at the Tug1 promoter under high-glucose conditions. These observations provide the first characterization of the mouse Tug1 promoter's response to the high-glucose milieu. Our findings illustrate a molecular mechanism by which ChREBP can coordinate glucose homeostasis with the expression of the lncRNA Tug1 and further our understanding of dynamic transcriptional regulation of lncRNAs in a disease state.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Podocitos/metabolismo , ARN Largo no Codificante/biosíntesis , Transcripción Genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular Tumoral , Glucosa/genética , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Humanos , Ratones , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
5.
J Biol Chem ; 291(47): 24418-24430, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27703003

RESUMEN

SNIP1 (Smad nuclear interacting protein 1) is a transcription repressor for the TGF-ß and NF-κB signaling pathways through disrupting the recruitment of co-activator p300. However, it is unclear how the functions of SNIP1 in the TGF-ß signaling pathway are controlled. Our present studies show that SNIP1 is covalently modified by small ubiquitin-like modifier (SUMO) in vitro and in vivo at three lysine sites: Lys5, Lys30, and Lys108, with Lys30 being the major SUMO modification site. SUMOylation of SNIP1 is enhanced by SUMO E3 ligase PIAS proteins and inhibited by SUMO proteases SENP1/2. Furthermore, we find that SUMOylation of SNIP1 attenuates its inhibitory effect in TGF-ß signaling because the SUMO-conjugated form of SNIP1 exhibits impaired ability to disrupt the formation of Smad complex and the interaction between p300 and Smads. Subsequently, SUMOylation of SNIP1 leads to the loss of SNIP1-mediated inhibition on expression of the TGF-ß target genes PAI-1 and MMP2 and eventually enhances TGF-ß-regulated cell migration and invasion.


Asunto(s)
Movimiento Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína SUMO-1/metabolismo , Transducción de Señal/fisiología , Sumoilación/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Células A549 , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Metaloproteinasa 2 de la Matriz/biosíntesis , Metaloproteinasa 2 de la Matriz/genética , Inhibidor 1 de Activador Plasminogénico/biosíntesis , Inhibidor 1 de Activador Plasminogénico/genética , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas de Unión al ARN , Proteína SUMO-1/genética , Factor de Crecimiento Transformador beta/genética
6.
7.
Kidney Int ; 92(5): 1282-1287, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28754553

RESUMEN

While increased mitochondrial reactive oxygen species have been commonly implicated in a variety of disease states, their in vivo role in the pathogenesis of diabetic nephropathy remains controversial. Using a two-photon imaging approach with a genetically encoded redox biosensor, we monitored mitochondrial redox state in the kidneys of experimental models of diabetes in real-time in vivo. Diabetic (db/db) mice that express a redox-sensitive Green Fluorescent Protein biosensor (roGFP) specifically in the mitochondrial matrix (db/dbmt-roGFP) were generated, allowing dynamic monitoring of redox changes in the kidneys. These db/dbmt-roGFP mice exhibited a marked increase in mitochondrial reactive oxygen species in the kidneys. Yeast NADH-dehydrogenase, a mammalian Complex I homolog, was ectopically expressed in cultured podocytes, and this forced expression in roGFP-expressing podocytes prevented high glucose-induced increases in mitochondrial reactive oxygen species. Thus, in vivo monitoring of mitochondrial roGFP in diabetic mice confirms increased production of mitochondrial reactive oxygen species in the kidneys.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/patología , Riñón/patología , Mitocondrias/patología , Especies Reactivas de Oxígeno/metabolismo , Animales , Técnicas Biosensibles , Células Cultivadas , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/etiología , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Oxidación-Reducción , Podocitos
8.
J Biol Chem ; 288(51): 36202-14, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24163368

RESUMEN

Accumulating evidence suggests that microRNAs (miRNAs) contribute to a myriad of kidney diseases. However, the regulatory role of miRNAs on the key molecules implicated in kidney fibrosis remains poorly understood. Bone morphogenetic protein-7 (BMP-7) and its related BMP-6 have recently emerged as key regulators of kidney fibrosis. Using the established unilateral ureteral obstruction (UUO) model of kidney fibrosis as our experimental model, we examined the regulatory role of miRNAs on BMP-7/6 signaling. By analyzing the potential miRNAs that target BMP-7/6 in silica, we identified miR-22 as a potent miRNA targeting BMP-7/6. We found that expression levels of BMP-7/6 were significantly elevated in the kidneys of the miR-22 null mouse. Importantly, mice with targeted deletion of miR-22 exhibited attenuated renal fibrosis in the UUO model. Consistent with these in vivo observations, primary renal fibroblast isolated from miR-22-deficient UUO mice demonstrated a significant increase in BMP-7/6 expression and their downstream targets. This phenotype could be rescued when cells were transfected with miR-22 mimics. Interestingly, we found that miR-22 and BMP-7/6 are in a regulatory feedback circuit, whereby not only miR-22 inhibits BMP-7/6, but miR-22 by itself is induced by BMP-7/6. Finally, we identified two BMP-responsive elements in the proximal region of miR-22 promoter. These findings identify miR-22 as a critical miRNA that contributes to renal fibrosis on the basis of its pivotal role on BMP signaling cascade.


Asunto(s)
Proteína Morfogenética Ósea 6/metabolismo , Proteína Morfogenética Ósea 7/metabolismo , Riñón/metabolismo , MicroARNs/metabolismo , Animales , Secuencia de Bases , Proteína Morfogenética Ósea 6/genética , Proteína Morfogenética Ósea 7/genética , Fibrosis/metabolismo , Homeostasis , Riñón/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , MicroARNs/genética , Datos de Secuencia Molecular , Elementos de Respuesta , Transducción de Señal , Transcripción Genética
9.
Nat Commun ; 15(1): 1965, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438382

RESUMEN

The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generate diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model investigate the role of ETC integrity in diabetic kidney disease (DKD). We find that conditional male mice with genetic overexpression of Ndufs4 exhibit significant improvements in cristae morphology, mitochondrial dynamics, and albuminuria. By coupling proximity labeling with super-resolution imaging, we also identify the role of cristae shaping protein STOML2 in linking NDUFS4 with improved cristae morphology. Together, we provide the evidence on the central role of NDUFS4 as a regulator of cristae remodeling and mitochondrial function in kidney podocytes. We propose that targeting NDUFS4 represents a promising approach to slow the progression of DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Masculino , Animales , Ratones , Nefropatías Diabéticas/genética , Diabetes Mellitus Experimental/genética , Membranas Mitocondriales , Riñón , Mitocondrias , Complejo I de Transporte de Electrón/genética
10.
Res Sq ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37461606

RESUMEN

The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generated diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model to investigate the role of ETC integrity in diabetic kidney disease (DKD). We find that these conditional mice exhibit significant improvements in cristae morphology, mitochondrial dynamics, and albuminuria. By coupling proximity labeling with super-resolution imaging, we also identify the role of cristae shaping proteins in linking NDUFS4 with improved cristae morphology. Taken together, we discover the central role of NDUFS4 as a powerful regulator of cristae remodeling, respiratory supercomplexes assembly, and mitochondrial ultrastructure in vitro and in vivo. We propose that targeting NDUFS4 represents a promising approach to slow the progression of DKD.

11.
J Biol Chem ; 286(13): 11837-48, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21310958

RESUMEN

Although several recent publications have suggested that microRNAs contribute to the pathogenesis of diabetic nephropathy, the role of miRNAs in vivo still remains poorly understood. Using an integrated in vitro and in vivo comparative miRNA expression array, we identified miR-29c as a signature miRNA in the diabetic environment. We validated our profiling array data by examining miR-29c expression in the kidney glomeruli obtained from db/db mice in vivo and in kidney microvascular endothelial cells and podocytes treated with high glucose in vitro. Functionally, we found that miR-29c induces cell apoptosis and increases extracellular matrix protein accumulation. Indeed, forced expression of miR-29c strongly induced podocyte apoptosis. Conversely, knockdown of miR-29c prevented high glucose-induced cell apoptosis. We also identified Sprouty homolog 1 (Spry1) as a direct target of miR-29c with a nearly perfect complementarity between miR-29c and the 3'-untranslated region (UTR) of mouse Spry1. Expression of miR-29c decreased the luciferase activity of Spry1 when co-transfected with the mouse Spry1 3'-UTR reporter construct. Overexpression of miR-29c decreased the levels of Spry1 protein and promoted activation of Rho kinase. Importantly, knockdown of miR-29c by a specific antisense oligonucleotide significantly reduced albuminuria and kidney mesangial matrix accumulation in the db/db mice model in vivo. These findings identify miR-29c as a novel target in diabetic nephropathy and provide new insights into the role of miR-29c in a previously unrecognized signaling cascade involving Spry1 and Rho kinase activation.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/biosíntesis , Fosfoproteínas/metabolismo , Podocitos/metabolismo , Regiones no Traducidas 3'/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Apoptosis/efectos de los fármacos , Línea Celular Transformada , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/terapia , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/biosíntesis , Proteínas de la Matriz Extracelular/genética , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/genética , Ratones , MicroARNs/genética , Oligodesoxirribonucleótidos Antisentido/farmacología , Fosfoproteínas/genética , Podocitos/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
12.
J Biol Chem ; 285(30): 23457-65, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20501654

RESUMEN

Vascular endothelial growth factor (VEGF) is a dimeric glycoprotein that plays a crucial role in microvascular complications of diabetes, including diabetic nephropathy. However, the precise regulatory mechanisms governing VEGF expression in the diabetic milieu are still poorly understood. Here, we provide evidence that microRNA-93 (miR-93) regulates VEGF expression in experimental models of diabetes both in vitro and in vivo. Comparative microRNA expression profile arrays identified miR-93 as a signature microRNA in hyperglycemic conditions. We identified VEGF-A as a putative target of miR-93 in the kidney with a perfect complementarity between miR-93 and the 3'-untranslated region of vegfa in several species. When cotransfected with a luciferase reporter construct containing the mouse vegfa 3'-untranslated region, expression of miR-93 markedly decreased the luciferase activity. We showed that forced expression of miR-93 in cells abrogated VEGF protein secretion. Conversely, anti-miR-93 inhibitors increased VEGF release. Transfection of miR-93 also prevented the effect of high glucose on VEGF downstream targets. Using transgenic mice containing VEGF-LacZ bicistronic transcripts, we found that inhibition of glomerular miR-93 by peptide-conjugated morpholino oligomers elicited increased expression of VEGF. Our findings also indicate that high glucose decreases miR-93 expression by down-regulating the promoter of the host MCM7 gene. Taken together, our findings provide new insights into the role of miR-93 in VEGF signaling pathway and offer a potentially novel target in preventing the progression of diabetic nephropathy.


Asunto(s)
Hiperglucemia/genética , Hiperglucemia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Diabetes Mellitus/fisiopatología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Glucosa/farmacología , Células HeLa , Humanos , Hiperglucemia/patología , Hiperglucemia/fisiopatología , Ratones , Microvasos/citología , Componente 7 del Complejo de Mantenimiento de Minicromosoma , Datos de Secuencia Molecular , Morfolinas/química , Morfolinas/farmacología , Proteínas Nucleares/genética , Podocitos/citología , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Polímeros/química , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Transcripción Genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Nephron ; 145(4): 404-414, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33853077

RESUMEN

Recent advances in large-scale RNA sequencing and genome-wide profiling projects have unraveled a heterogeneous group of RNAs, collectively known as long noncoding RNAs (lncRNAs), which play central roles in many diverse biological processes. Importantly, an association between aberrant expression of lncRNAs and diverse human pathologies has been reported, including in a variety of kidney diseases. These observations have raised the possibility that lncRNAs may represent unexploited potential therapeutic targets for kidney diseases. Several important questions regarding the functionality of lncRNAs and their impact in kidney diseases, however, remain to be carefully addressed. Here, we provide an overview of the main functions and mechanisms of actions of lncRNAs, and their promise as therapeutic targets in kidney diseases, emphasizing on the role of some of the best-characterized lncRNAs implicated in the pathogenesis and progression of diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/terapia , ARN Largo no Codificante/uso terapéutico , Nefropatías Diabéticas/patología , Humanos , Riñón/patología
14.
Cell Rep ; 36(6): 109510, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380028

RESUMEN

lncRNA taurine-upregulated gene 1 (Tug1) is a promising therapeutic target in the progression of diabetic nephropathy (DN), but the molecular basis of its protection remains poorly understood. Here, we generate a triple-mutant diabetic mouse model coupled with metabolomic profiling data to interrogate whether Tug1 interaction with peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) is required for mitochondrial remodeling and progression of DN in vivo. We find that, compared with diabetic conditional deletion of Pgc1α in podocytes alone (db/db; Pgc1αPod-f/f), diabetic Pgc1α knockout combined with podocyte-specific Tug1 overexpression (db/db; TugPodTg; Pgc1αPod-f/f) reverses the protective phenotype of Tug1 overexpression, suggesting that PGC1α is required for the renoprotective effect of Tug1. Using unbiased metabolomic profiling, we find that altered urea cycle metabolites and mitochondrial arginase 2 play an important role in Tug1/PGC1α-induced mitochondrial remodeling. Our work identifies a functional role of the Tug1/PGC1α axis on mitochondrial metabolic homeostasis and urea cycle metabolites in experimental models of diabetes.


Asunto(s)
Riñón/metabolismo , Metaboloma , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sustancias Protectoras/metabolismo , ARN Largo no Codificante/metabolismo , Urea/metabolismo , Animales , Arginasa/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Progresión de la Enfermedad , Eliminación de Gen , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/deficiencia , Podocitos/metabolismo , ARN Largo no Codificante/genética
15.
Genesis ; 48(7): 446-51, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20641128

RESUMEN

We report the generation and initial characterization of a mouse line expressing tamoxifen-inducible improved Cre (iCre) recombinase (iCre-ER(T2)) under the regulation of NPHS2 (podocin) gene promoter. The resulting transgenic mouse line was named podocin-iCreER(T2) mice. The efficiency of iCre activity was confirmed by crossing podocin-iCreER(T2) with the ROSA26 reporter mouse. By using the floxed ROSA reporter mice, we found that tamoxifen specifically induced recombination in the kidneys. In the absence of tamoxifen, recombination was undetectable in podocin-iCreER(T2);ROSA26 mice. However, following intraperitoneal injection of tamoxifen, selective recombination was observed in the podocytes of adult animals. We further examined the efficiency of recombination by assessing various tamoxifen exposure regimens in adult mice. These results suggest that podocin-iCre-ER(T2) mouse provides an excellent genetic tool to examine the function of candidate genes in podocytes in a spatially and temporally-restricted manner.


Asunto(s)
Integrasas/fisiología , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Tamoxifeno/farmacología , Factores de Edad , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
16.
Nature ; 430(6996): 226-31, 2004 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-15241418

RESUMEN

Transforming growth factor-beta (TGF-beta) potently inhibits cell cycle progression at the G1 phase. Smad3 has a key function in mediating the TGF-beta growth-inhibitory response. Here we show that Smad3 is a major physiological substrate of the G1 cyclin-dependent kinases CDK4 and CDK2. Except for the retinoblastoma protein family, Smad3 is the only CDK4 substrate demonstrated so far. We have mapped CDK4 and CDK2 phosphorylation sites to Thr 8, Thr 178 and Ser 212 in Smad3. Mutation of the CDK phosphorylation sites increases Smad3 transcriptional activity, leading to higher expression of the CDK inhibitor p15. Mutation of the CDK phosphorylation sites of Smad3 also increases its ability to downregulate the expression of c-myc. Using Smad3(-/-) mouse embryonic fibroblasts and other epithelial cell lines, we further show that Smad3 inhibits cell cycle progression from G1 to S phase and that mutation of the CDK phosphorylation sites in Smad3 increases this ability. Taken together, these findings indicate that CDK phosphorylation of Smad3 inhibits its transcriptional activity and antiproliferative function. Because cancer cells often contain high levels of CDK activity, diminishing Smad3 activity by CDK phosphorylation may contribute to tumorigenesis and TGF-beta resistance in cancers.


Asunto(s)
Quinasas CDC2-CDC28/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas , Fase S , Transactivadores/metabolismo , Animales , Quinasas CDC2-CDC28/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , Células Cultivadas , Quinasa 2 Dependiente de la Ciclina , Quinasa 4 Dependiente de la Ciclina , Inhibidor p15 de las Quinasas Dependientes de la Ciclina , Quinasas Ciclina-Dependientes/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Fibroblastos , Fase G1 , Regulación de la Expresión Génica , Genes Reporteros/genética , Genes myc/genética , Humanos , Ratones , Ratones Noqueados , Mutación/genética , Fosforilación , Proteína Smad2 , Proteína smad3 , Transactivadores/química , Transactivadores/deficiencia , Transactivadores/genética , Transcripción Genética/genética , Proteínas Supresoras de Tumor/metabolismo
17.
Oncogene ; 38(34): 6211-6225, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31289360

RESUMEN

One-carbon metabolism plays a central role in a broad array of metabolic processes required for the survival and growth of tumor cells. However, the molecular basis of how one-carbon metabolism may influence RNA methylation and tumorigenesis remains largely unknown. Here we show MTHFD2, a mitochondrial enzyme involved in one-carbon metabolism, contributes to the progression of renal cell carcinoma (RCC) via a novel epitranscriptomic mechanism that involves HIF-2α. We found that expression of MTHFD2 was significantly elevated in human RCC tissues, and MTHFD2 knockdown strongly reduced xenograft tumor growth. Mechanistically, using an unbiased methylated RNA immunoprecipitation sequencing (meRIP-Seq) approach, we found that MTHFD2 plays a critical role in controlling global N6-methyladenosine (m6A) methylation levels, including the m6A methylation of HIF-2α mRNA, which results in enhanced translation of HIF-2α. Enhanced HIF-2α translation, in turn, promotes the aerobic glycolysis, linking one-carbon metabolism to HIF-2α-dependent metabolic reprogramming through RNA methylation. Our findings also suggest that MTHFD2 and HIF-2α form a positive feedforward loop in RCC, promoting metabolic reprograming and tumor growth. Taken together, our results suggest that MTHFD2 links RNA methylation status to the metabolic state of tumor cells in RCC.


Asunto(s)
Aminohidrolasas/fisiología , Carcinoma de Células Renales/metabolismo , Glucólisis/genética , Neoplasias Renales/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/fisiología , Metiltransferasas/metabolismo , Enzimas Multifuncionales/fisiología , Procesamiento Postranscripcional del ARN/genética , Animales , Metabolismo de los Hidratos de Carbono/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Reprogramación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , Metilación , Ratones , Ratones Desnudos
18.
J Clin Invest ; 129(7): 2807-2823, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31063459

RESUMEN

Phosphorylation of Dynamin-related protein1 (Drp1) represents an important regulatory mechanism for mitochondrial fission. Here we established the role of Drp1 Serine 600 (S600) phosphorylation on mitochondrial fission in vivo, and assessed the functional consequences of targeted elimination of the Drp1S600 phosphorylation site in progression of diabetic nephropathy (DN). We generated a knockin mouse in which S600 was mutated to alanine (Drp1S600A). We found that diabetic Drp1S600A mice exhibited improved biochemical and histological features of DN along with reduced mitochondrial fission and diminished mitochondrial ROS in vivo. Importantly, we observed that the effect of Drp1S600 phosphorylation on mitochondrial fission in the diabetic milieu was stimulus- but not cell type-dependent. Mechanistically, we showed that mitochondrial fission in high glucose conditions occurs through concomitant binding of phospho-Drp1S600 with mitochondrial fission factor (Mff) and actin-related protein 3 (Arp3), ultimately leading to accumulation of F-actin and Drp1 on the mitochondria. Taken together, these findings establish that a single phosphorylation site in Drp1 can regulate mitochondrial fission and progression of DN in vivo, and highlight the stimulus-specific consequences of Drp1S600 phosphorylation on mitochondrial dynamics.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Dinaminas/metabolismo , Mutación Missense , Proteína 3 Relacionada con la Actina/genética , Proteína 3 Relacionada con la Actina/metabolismo , Sustitución de Aminoácidos , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Dinaminas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación/genética
20.
Biochem J ; 386(Pt 1): 29-34, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15588252

RESUMEN

Transforming growth factor-beta (TGF-beta)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-beta/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-beta transcriptional activation responses, although it can be phosphorylated by the TGF-beta receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-beta. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control.


Asunto(s)
Proteínas de Unión al ADN/química , Transactivadores/química , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Proteínas E1A de Adenovirus/farmacología , Animales , Sitios de Unión , Células Cultivadas , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Genes Reporteros , Humanos , Mamíferos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Prolina/química , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/fisiología , Serina/química , Proteína smad3 , Relación Estructura-Actividad , Transactivadores/metabolismo , Transactivadores/fisiología , Activación Transcripcional , Transfección , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA