Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Dev Cell ; 56(2): 156-158, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33497620

RESUMEN

How cells sense their physical microenvironment remains incompletely understood. In two recent Science articles, Lomakin et al. (2020) and Venturini et al. (2020) demonstrate that progressive nuclear deformation associated with cellular confinement triggers intracellular events that promote cell contractility and migration, revealing the nucleus to serve as a central mechanosensor.


Asunto(s)
Núcleo Celular , Propiocepción , Línea Celular Tumoral , Movimiento Celular , Citoplasma
2.
Biomaterials ; 272: 120764, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33798964

RESUMEN

Cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) offer tremendous potential when used to engineer human tissues for drug screening and disease modeling; however, phenotypic immaturity reduces assay reliability when translating in vitro results to clinical studies. To address this, we have developed hybrid hydrogels comprised of decellularized porcine myocardial extracellular matrix (dECM) and reduced graphene oxide (rGO) to provide a more instructive microenvironment for proper cell and tissue development. A tissue-specific protein profile was preserved post-decellularization, and through the modulation of rGO content and degree of reduction, the mechanical and electrical properties of the hydrogels could be tuned. Engineered heart tissues (EHTs) generated using dECM-rGO hydrogel scaffolds and hiPSC-derived cardiomyocytes exhibited significantly increased twitch forces and had increased expression of genes that regulate contractile function. Improvements in various aspects of electrophysiological function, such as calcium-handling, action potential duration, and conduction velocity, were also induced by the hybrid biomaterial. dECM-rGO hydrogels could also be used as a bioink to print cardiac tissues in a high-throughput manner, and these tissues were utilized to assess the proarrhythmic potential of cisapride. Action potential prolongation and beat interval irregularities was observed in dECM-rGO tissues at clinical doses of cisapride, indicating that the enhanced electrophysiological function of these tissues corresponded well with a capability to produce physiologically relevant drug responses.


Asunto(s)
Hidrogeles , Células Madre Pluripotentes Inducidas , Animales , Matriz Extracelular , Humanos , Reproducibilidad de los Resultados , Porcinos , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA