Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 32(2): 1562-1575, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297705

RESUMEN

We investigate the properties of a soft glass dual-core photonic crystal fiber for application in multicore waveguiding with balanced gain and loss. Its base material is a phosphate glass in a P2O5-Al2O3-Yb2O3-BaO-ZnO-MgO-Na2O oxide system. The separated gain and loss cores are realized with two cores with ytterbium and copper doping of the base phosphate glass. The ytterbium-doped core supports a laser (gain) activity under excitation with a pump at 1000 nm wavelength, while the CuO-doped is responsible for strong attenuation at the same wavelength. We establish conditions for an exact balance between gain and loss and investigate pulse propagation by solving a system of coupled generalized nonlinear Schrödinger equations. We predict two states of light under excitation with hyperbolic secant pulses centered at 1000 nm: 1) linear oscillation of the pulse energy between gain and loss core (P T-symmetry state), with strong power attenuation; 2) retention of the pulse in the excited gain core (broken P T-symmetry), with very modest attenuation. The optimal pulse energy levels were identified to be 100 pJ (first state) and 430 pJ (second state).

2.
Opt Lett ; 49(1): 149-152, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134174

RESUMEN

We systematically present experimental and theoretical results for the dual-wavelength switching of 1560 nm, 75 fs signal pulses (SPs) driven by 1030 nm, and 270 fs control pulses (CPs) in a dual-core fiber (DCF). We demonstrate a switching contrast of 31.9 dB, corresponding to a propagation distance of 14 mm, achieved by launching temporally synchronized SP-CP pairs into the fast core of the DCF with moderate inter-core asymmetry. Our analysis employs a system of three coupled propagation equations to identify the compensation of the asymmetry by nonlinearity as the physical mechanism behind the efficient switching performance.

3.
Appl Opt ; 60(32): 10191-10198, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34807127

RESUMEN

We present a complex study of pulse-energy-controlled solitonic self-switching of femtosecond pulses at wavelengths of 1700 and 1560 nm in two nonlinear high-index contrast dual-core fibers having different levels of slight asymmetry. In the case of the fiber with higher dual-core asymmetry excited by 1700 nm pulses, the highest switching contrast of 20.8 dB at 40 mm fiber length was demonstrated. It was accompanied by multiple exchanges of the dominant core at the fiber output, which is a strong signature of the soliton-based switching process. In the case of the fiber with lower dual-core asymmetry, excited by 1560 nm pulses, the highest switching contrast of 21.4 dB at 35 mm fiber length was achieved with a broadband character of the switching in the spectral range of 1450-1650 nm. Both demonstrations represent progress in all-optical switching studies at these particular wavelengths thanks to a comparison between their results, which reveals the requirement of a higher level of dual-core symmetry for applicable C-band operation.

4.
Opt Lett ; 45(18): 5221-5224, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32932495

RESUMEN

We experimentally investigate a nonlinear switching mechanism in a dual-core highly nonlinear optical fiber. We focus the input stream of femtosecond pulses on one core only, to identify transitions between inter-core oscillations, self-trapping in the cross core, and self-trapping of the pulse in the straight core. A model based on the system of coupled nonlinear Schrödinger equations provides surprisingly good agreement with the experimental findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA