RESUMEN
Wearable exoskeleton robots have become a promising technology for supporting human motions in multiple tasks. Activity recognition in real-time provides useful information to enhance the robot's control assistance for daily tasks. This work implements a real-time activity recognition system based on the activity signals of an inertial measurement unit (IMU) and a pair of rotary encoders integrated into the exoskeleton robot. Five deep learning models have been trained and evaluated for activity recognition. As a result, a subset of optimized deep learning models was transferred to an edge device for real-time evaluation in a continuous action environment using eight common human tasks: stand, bend, crouch, walk, sit-down, sit-up, and ascend and descend stairs. These eight robot wearer's activities are recognized with an average accuracy of 97.35% in real-time tests, with an inference time under 10 ms and an overall latency of 0.506 s per recognition using the selected edge device.
Asunto(s)
Aprendizaje Profundo , Dispositivo Exoesqueleto , Robótica , Dispositivos Electrónicos Vestibles , Humanos , Actividades HumanasRESUMEN
Recording human gestures from a wearable sensor produces valuable information to implement control gestures or in healthcare services. The wearable sensor is required to be small and easily worn. Advances in miniaturized sensor and materials research produces patchable inertial measurement units (IMUs). In this paper, a hand gesture recognition system using a single patchable six-axis IMU attached at the wrist via recurrent neural networks (RNN) is presented. The IMU comprises IC-based electronic components on a stretchable, adhesive substrate with serpentine-structured interconnections. The proposed patchable IMU with soft form-factors can be worn in close contact with the human body, comfortably adapting to skin deformations. Thus, signal distortion (i.e., motion artifacts) produced for vibration during the motion is minimized. Also, our patchable IMU has a wireless communication (i.e., Bluetooth) module to continuously send the sensed signals to any processing device. Our hand gesture recognition system was evaluated, attaching the proposed patchable six-axis IMU on the right wrist of five people to recognize three hand gestures using two models based on recurrent neural nets. The RNN-based models are trained and validated using a public database. The preliminary results show that our proposed patchable IMU have potential to continuously monitor people's motions in remote settings for applications in mobile health, human-computer interaction, and control gestures recognition.