Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 24(20)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37894882

RESUMEN

Bacteriophage therapy is considered one of the most promising tools to control zoonotic bacteria, such as Salmonella, in broiler production. Phages exhibit high specificity for their targeted bacterial hosts, causing minimal disruption to the niche microbiota. However, data on the gut environment's response to phage therapy in poultry are limited. This study investigated the influence of Salmonella phage on host physiology through caecal microbiota and metabolome modulation using high-throughput 16S rRNA gene sequencing and an untargeted metabolomics approach. We employed 24 caecum content samples and 24 blood serum samples from 4-, 5- and 6-week-old broilers from a previous study where Salmonella phages were administered via feed in Salmonella-infected broilers, which were individually weighed weekly. Phage therapy did not affect the alpha or beta diversity of the microbiota. Specifically, we observed changes in the relative abundance of 14 out of the 110 genera using the PLS-DA and Bayes approaches. On the other hand, we noted changes in the caecal metabolites (63 up-accumulated and 37 down-accumulated out of the 1113 caecal metabolites). Nevertheless, the minimal changes in blood serum suggest a non-significant physiological response. The application of Salmonella phages under production conditions modulates the caecal microbiome and metabolome profiles in broilers without impacting the host physiology in terms of growth performance.


Asunto(s)
Microbiota , Terapia de Fagos , Fagos de Salmonella , Animales , Pollos/genética , ARN Ribosómico 16S/genética , Teorema de Bayes , Microbiota/genética , Fagos de Salmonella/genética , Ciego/microbiología , Metaboloma , Salmonella/genética
2.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430732

RESUMEN

A tight relationship between gut-liver diseases and brain functions has recently emerged. Bile acid (BA) receptors, bacterial-derived molecules and the blood-brain barrier (BBB) play key roles in this association. This study was aimed to evaluate how non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) impact the BA receptors Farnesoid X receptor (FXR) and Takeda G-protein coupled receptor 5 (TGR5) expression in the brain and to correlate these effects with circulating BAs composition, BBB integrity and neuroinflammation. A mouse model of NAFLD was set up by a high-fat and sugar diet, and NASH was induced with the supplementation of dextran-sulfate-sodium (DSS) in drinking water. FXR, TGR5 and ionized calcium-binding adaptor molecule 1 (Iba-1) expression in the brain was detected by immunohistochemistry, while Zonula occludens (ZO)-1, Occludin and Plasmalemmal Vesicle Associated Protein-1 (PV-1) were analyzed by immunofluorescence. Biochemical analyses investigated serum BA composition, lipopolysaccharide-binding protein (LBP) and S100ß protein (S100ß) levels. Results showed a down-regulation of FXR in NASH and an up-regulation of TGR5 and Iba-1 in the cortex and hippocampus in both treated groups as compared to the control group. The BA composition was altered in the serum of both treated groups, and LBP and S100ß were significantly augmented in NASH. ZO-1 and Occludin were attenuated in the brain capillary endothelial cells of both treated groups versus the control group. We demonstrated that NAFLD and NASH provoke different grades of brain dysfunction, which are characterized by the altered expression of BA receptors, FXR and TGR5, and activation of microglia. These effects are somewhat promoted by a modification of circulating BAs composition and by an increase in LBP that concur to damage BBB, thus favoring neuroinflammation.


Asunto(s)
Ácidos y Sales Biliares , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Barrera Hematoencefálica/metabolismo , Ocludina/metabolismo , Células Endoteliales/metabolismo , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232813

RESUMEN

Chronic inflammatory bowel disorders (IBD) are idiopathic diseases associated with altered intestinal permeability, which in turn causes an exaggerated immune response to enteric antigens in a genetically susceptible host. A rise in psych cognitive disorders, such as anxiety and depression, has been observed in IBD patients. We here report investigations on a model of chemically induced experimental colitis by oral administration of sodium dextran sulfate (DSS) in C57BL/6 mice. We investigate, in vivo, the crosstalk between the intestine and the brain, evaluating the consequences of intestinal inflammation on neuroinflammation and hippocampal adult neurogenesis. By using different DSS administration strategies, we are able to induce acute or chronic colitis, simulating clinical characteristics observed in IBD patients. Body weight loss, colon shortening, alterations of the intestinal mucosa and fecal metabolic changes in amino acids-, lipid- and thiamine-related pathways are observed in colitis. The activation of inflammatory processes in the colon is confirmed by macrophage infiltration and increased expression of the proinflammatory cytokine and oxidative stress marker (Il-6 and iNOS). Interestingly, in the hippocampus of acutely DSS-treated mice, we report the upregulation of inflammatory-related genes (Il-6, Il-1ß, S-100, Tgf-ß and Smad-3), together with microgliosis. Chronic DSS treatment also resulted in neuroinflammation in the hippocampus, indicated by astrocyte activation. Evaluation of stage-specific neurogenesis markers reveals deficits in the dentate gyrus after acute and chronic DSS treatments, indicative of defective adult hippocampal neurogenesis. Finally, based on a possible causal relationship between gut-related inflammation and brain cancer, we investigate the impact of DSS-induced colitis on oncogenesis, using the Ptch1+/-/C57BL/6 mice, a well-established medulloblastoma (MB) mouse model, finding no differences in MB development between untreated and DSS-treated mice. In conclusion, in our experimental model, the intestinal inflammation associated with acute and chronic colitis markedly influences brain homeostasis, impairing hippocampal neurogenesis but not MB oncogenesis.


Asunto(s)
Neoplasias Encefálicas , Colitis , Enfermedades Inflamatorias del Intestino , Aminoácidos , Animales , Eje Cerebro-Intestino , Carcinogénesis , Colitis/patología , Colon/patología , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Inflamación , Interleucina-6/metabolismo , Lípidos/efectos adversos , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Sulfatos , Tiamina , Factor de Crecimiento Transformador beta/metabolismo
4.
Animals (Basel) ; 14(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731285

RESUMEN

In the ex situ conservation of chondrichthyan species, successful reproduction in aquaria is essential. However, these species often exhibit reduced reproductive success under human care. A key aspect is that conventional sperm analyses do not provide insights into the functional competence of sperm. However, proteomics analysis enables a better understanding of male physiology, gaining relevance as a powerful tool for discovering protein biomarkers related to fertility. The present work aims to build the first proteome database for shark semen and to investigate the proteomic profiles of seminal plasma and spermatozoa from small-spotted catsharks (Scyliorhinus canicula) related to the underlying adaptations to both natural and aquarium environments, thereby identifying the reproductive impact in aquarium specimens. A total of 305 seminal plasma and 535 spermatozoa proteins were identified. Among these, 89 proteins (29.2% of the seminal plasma set) were common to both spermatozoa and seminal plasma. In the seminal plasma, only adenosylhomocysteinase protein showed differential abundance (DAP) between wild and aquarium animals. With respect to the spermatozoa proteins, a total of 107 DAPs were found between groups. Gene Ontology enrichment analysis highlighted the primary functional roles of these DAPs involved in oxidoreductase activity. Additionally, KEGG analysis indicated that these DAPs were primarily associated with metabolic pathways and carbon metabolism. In conclusion, we have successfully generated an initial proteome database for S. canicula seminal plasma and spermatozoa. Furthermore, we have identified protein variations, predominantly within spermatozoa, between aquarium and wild populations of S. canicula. These findings provide a foundation for future biomarker discovery in shark reproduction studies. However, additional research is required to determine whether these protein variations correlate with reproductive declines in captive sharks.

5.
Front Vet Sci ; 11: 1401561, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021414

RESUMEN

Introduction: Stringent regulations in pig farming, such as antibiotic control and the ban on certain additives and disinfectants, complicate disease control efforts. Despite the evolution of microbial communities inside the house environment, they maintain stability over the years, exhibiting characteristics specific to each type of production and, in some cases, unique to a particular company or farm production type. In addition, some infectious diseases are recurrent in specific farms, while other farms never present these diseases, suggesting a connection between the presence of these microorganisms in animals or their environment. Therefore, the aim of this study was to characterise environmental microbiomes of farms with high and low sanitary status, establishing the relationships between both, health status, environmental microbial ecology and its functionality. Methods: For this purpose, 6 pig farms were environmentally sampled. Farms were affiliated with a production company that handle the majority of the pigs slaughtered in Spain. This study investigated the relationship among high health and low health status farms using high throughput 16S rRNA gene sequencing. In addition, to identify ecologically relevant functions and potential pathogens based on the 16S rRNA gene sequences obtained, functional Annotation with PROkaryotic TAXa (FAPROTAX) was performed. Results and Discussion: This study reveals notable differences in microbial communities between farms with persistent health issues and those with good health outcomes, suggesting a need for protocols tailored to address specific challenges. The variation in microbial populations among farms underscores the need for specific and eco-friendly cleaning and disinfection protocols. These measures are key to enhancing the sustainability of livestock farming, ensuring safer products and boosting competitive edge in the market.

6.
Antibiotics (Basel) ; 13(9)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39335056

RESUMEN

Antimicrobial resistance poses a major threat to global health and food security and is primarily driven by antimicrobial use in human and veterinary medicine. Understanding its epidemiology at farm level is crucial for effective control measures. Despite the significant reduction in antibiotic use in conventional livestock production, the swine sector traditionally has a higher level of antibiotic use in veterinary medicine. Consequently, multidrug resistance (MDR) among microbial isolates of swine origin has been relatively frequent. The aim of this study was to assess the presence of multidrug-resistant (MDR) bacteria, enteric pathogens and resistance genes to the main antibiotics used in clinical practice, both within the environment and in animals across pig farms characterized by varying degrees of sanitary status. A total of 274 samples were collected. Of these, 34 samples were collected from the environment (wall swabs, slat swabs and slurry pit), and 240 samples were collected from animals (sows' and piglets' rectal faeces). All samples were analysed for MDR bacteria and enteric pathogens. The study revealed a high frequency of extended-spectrum beta-lactamases (ESBL)-producing Enterobacterales and Campylobacter spp., with ESBL-producing Enterobacterales predominating in high health status farms (environment and animals) and Campylobacter spp. in both high health status and low health status environments. Additionally, a high percentage of methicillin-resistant Staphylococcus aureus (MRSA) was found, mainly in environmental samples from high health status farms, and Clostridioides difficile was distributed ubiquitously among farms and samples. Furthermore, though less frequently, vancomycin-resistant Enterococcus faecium (VRE) was isolated only in high health status farms, and Gram-negative bacilli resistant to carbapenems were isolated only in environmental samples of high health status and low health status farms. This study underscores the importance of surveillance for MDR bacteria in farm animals and their environment, including their waste. Such ecosystems serve as crucial reservoirs of bacteria, requiring national-level surveillance to promote responsible antibiotic use and pandemic control.

7.
Antibiotics (Basel) ; 12(11)2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-37998840

RESUMEN

Failure in antibiotic therapies due to the increase in antimicrobial-resistant (AMR) bacteria is one of the main threats to public and animal health. In recent decades, the perception of companion animals has changed, from being considered as a work tool to a household member, creating a family bond and sharing spaces in their daily routine. Hence, the aim of this study is to assess the current epidemiological situation regarding the presence of AMR and multidrug resistance (MDR) in companion animals in the Valencia Region, using the indicator bacteria Escherichia coli as a sentinel. For this purpose, 244 samples of dogs and cats were collected from veterinary centres to assess antimicrobial susceptibility against a panel of 22 antibiotics with public health relevance. A total of 197 E. coli strains were isolated from asymptomatic dogs and cats. The results showed AMR against all the 22 antibiotics studied, including those critically important to human medicine. Moreover, almost 50% of the strains presented MDR. The present study revealed the importance of monitoring AMR and MDR trends in companion animals, as they could pose a risk due to the spread of AMR and its resistance genes to humans, other animals and the environment they cohabit.

8.
Microorganisms ; 11(7)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37512937

RESUMEN

Salmonella spp. has been globally recognized as one of the leading causes of acute human bacterial gastroenteritis resulting from the consumption of animal-derived products. Salmonella Enteritidis, S. Typhimurium, and its monophasic variant are the main serovars responsible for human disease. However, a serovar known as S. Infantis has emerged as the fourth most prevalent serovar associated with human disease. A total of 95% of isolated S. Infantis serovars originate from broilers and their derived products. This serovar is strongly associated with an elevated antimicrobial (AMR) and multidrug resistance, a resistance to disinfectants, an increased tolerance to environmental mercury, a heightened virulence, and an enhanced ability to form biofilms and attach to host cells. Furthermore, this serovar harbors genes that confer resistance to colistin, a last-resort antibiotic in human medicine, and it has the potential to acquire additional transferable AMR against other critically important antimicrobials, posing a new and significant challenge to global public health. This review provides an overview of the current status of the S. Infantis serovar in the poultry sector, focusing on its key virulence factors, including its virulence genes, antimicrobial resistance, and biofilm formation. Additionally, novel holistic strategies for controlling S. Infantis along the entire food chain are presented in this review.

9.
Animals (Basel) ; 13(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38136863

RESUMEN

Control strategies to minimize pathogenic bacteria in food animal production are one of the key components in ensuring safer food for consumers. The most significant challenges confronting the food industry, particularly in the major poultry and swine sectors, are antibiotic resistance and resistance to cleaning and disinfection in zoonotic bacteria. In this context, bacteriophages have emerged as a promising tool for zoonotic bacteria control in the food industry, from animals and farm facilities to the final product. Phages are viruses that infect bacteria, with several advantages as a biocontrol agent such as high specificity, self-replication, self-limitation, continuous adaptation, low inherent toxicity and easy isolation. Their development as a biocontrol agent is of particular interest, as it would allow the application of a promising and even necessary "green" technology to combat pathogenic bacteria in the environment. However, bacteriophage applications have limitations, including selecting appropriate phages, legal restrictions, purification, dosage determination and bacterial resistance. Overcoming these limitations is crucial to enhance phage therapy's effectiveness against zoonotic bacteria in poultry. Thus, this review aims to provide a comprehensive view of the phage-biosanitation strategies for minimizing persistent Salmonella and Campylobacter bacteria in poultry.

10.
Microorganisms ; 11(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36985293

RESUMEN

Zoonotic parasitic diseases are considered a global threat to public health. In this sense, canines and felines may be infected by different cosmopolitan parasites, with playgrounds serving as an important focus of infection for humans, as well as domestic or wild animals. Knowledge of the epidemiological situation of parasites in animal reservoirs integrated into the environment, identifying the spread pathways, is a key element for an effective response to this threat. Thus, the aim of this study was to assess the frequency of intestinal parasites with zoonotic potential in 120 playgrounds in the Malaga province (Spain). Samples were processed and analysed following standard parasitological procedures. Some 36.7% of playgrounds were parasite-positive with one or more zoonotic parasites. The most common parasites recovered were nematodes (60.0%), followed by protozoan species (33.3%) and cestodes (6.7%). In the parasite-positive playgrounds, Toxocara spp. (17.0 ± 3.5%) and Giardia duodenalis (17.0 ± 3.4%) were the most predominant parasites. In addition, 34.1% of playgrounds were infected with multiple parasites. Our results show a high presence of parasitic forms with zoonotic potential in playgrounds in Malaga, Spain. Due to the close contact between pets and humans in playgrounds, the potential zoonotic risk may increase if prevention and control measures are not designed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA