Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Semin Cancer Biol ; 53: 48-58, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30130663

RESUMEN

Most tumors exhibit intra-tumor heterogeneity, which is associated with disease progression and an impaired response to therapy. Cancer cell plasticity has been proposed as being an important mechanism that, along with genetic and epigenetic alterations, promotes cancer cell diversity and contributes to intra-tumor heterogeneity. Plasticity endows cancer cells with the capacity to shift dynamically between a differentiated state, with limited tumorigenic potential, and an undifferentiated or cancer stem-like cell (CSC) state, which is responsible for long-term tumor growth. In addition, it confers the ability to transit into distinct CSC states with different competence to invade, disseminate and seed metastasis. Cancer cell plasticity has been linked to the epithelial-to-mesenchymal transition program and relies not only on cell-autonomous mechanisms, but also on signals provided by the tumor microenvironment and/or induced in response to therapy. We provide an overview of the dynamic transition for cancer cell states, the mechanisms governing cell plasticity and their impact on tumor progression, metastasis and therapy response. Understanding the mechanisms involved in cancer cell plasticity will provide insights for establishing new therapeutic interventions.


Asunto(s)
Plasticidad de la Célula/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias/genética , Células Madre Neoplásicas/metabolismo , Diferenciación Celular/genética , Progresión de la Enfermedad , Variación Genética , Humanos , Neoplasias/patología , Transducción de Señal/genética , Microambiente Tumoral/genética
2.
Nat Commun ; 15(1): 5352, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914547

RESUMEN

Immune checkpoint blockade (ICB) approaches have changed the therapeutic landscape for many tumor types. However, half of cutaneous squamous cell carcinoma (cSCC) patients remain unresponsive or develop resistance. Here, we show that, during cSCC progression in male mice, cancer cells acquire epithelial/mesenchymal plasticity and change their immune checkpoint (IC) ligand profile according to their features, dictating the IC pathways involved in immune evasion. Epithelial cancer cells, through the PD-1/PD-L1 pathway, and mesenchymal cancer cells, through the CTLA-4/CD80 and TIGIT/CD155 pathways, differentially block antitumor immune responses and determine the response to ICB therapies. Accordingly, the anti-PD-L1/TIGIT combination is the most effective strategy for blocking the growth of cSCCs that contain both epithelial and mesenchymal cancer cells. The expression of E-cadherin/Vimentin/CD80/CD155 proteins in cSCC, HNSCC and melanoma patient samples predicts response to anti-PD-1/PD-L1 therapy. Collectively, our findings indicate that the selection of ICB therapies should take into account the epithelial/mesenchymal features of cancer cells.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Células Escamosas , Plasticidad de la Célula , Transición Epitelial-Mesenquimal , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias Cutáneas , Animales , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/tratamiento farmacológico , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Ratones , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Masculino , Inmunoterapia/métodos , Transición Epitelial-Mesenquimal/inmunología , Plasticidad de la Célula/efectos de los fármacos , Línea Celular Tumoral , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/inmunología , Receptores Virales/metabolismo , Receptores Virales/genética , Antígeno B7-1/metabolismo , Receptores Inmunológicos/metabolismo
3.
Nat Commun ; 13(1): 6840, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369429

RESUMEN

The human transcriptome contains thousands of small open reading frames (sORFs) that encode microproteins whose functions remain largely unexplored. Here, we show that TINCR lncRNA encodes pTINCR, an evolutionary conserved ubiquitin-like protein (UBL) expressed in many epithelia and upregulated upon differentiation and under cellular stress. By gain- and loss-of-function studies, we demonstrate that pTINCR is a key inducer of epithelial differentiation in vitro and in vivo. Interestingly, low expression of TINCR associates with worse prognosis in several epithelial cancers, and pTINCR overexpression reduces malignancy in patient-derived xenografts. At the molecular level, pTINCR binds to SUMO through its SUMO interacting motif (SIM) and to CDC42, a Rho-GTPase critical for actin cytoskeleton remodeling and epithelial differentiation. Moreover, pTINCR increases CDC42 SUMOylation and promotes its activation, triggering a pro-differentiation cascade. Our findings suggest that the microproteome is a source of new regulators of cell identity relevant for cancer.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Sumoilación , Humanos , Neoplasias/genética , Proteínas de Unión al GTP rho/metabolismo , Ubiquitinas/metabolismo , ARN Largo no Codificante/genética
4.
Clin Cancer Res ; 27(5): 1491-1504, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262138

RESUMEN

PURPOSE: Recurrent and/or metastatic unresectable cutaneous squamous cell carcinomas (cSCCs) are treated with chemotherapy or radiotherapy, but have poor clinical responses. A limited response (up to 45% of cases) to EGFR-targeted therapies was observed in clinical trials with patients with advanced and metastatic cSCC. Here, we analyze the molecular traits underlying the response to EGFR inhibitors, and the mechanisms responsible for cSCC resistance to EGFR-targeted therapy. EXPERIMENTAL DESIGN: We generated primary cell cultures and patient cSCC-derived xenografts (cSCC-PDXs) that recapitulate the histopathologic and molecular features of patient tumors. Response to gefitinib treatment was tested and gefitinib-resistant (GefR) cSCC-PDXs were developed. RNA sequence analysis was performed in matched untreated and GefR cSCC-PDXs to determine the mechanisms driving gefitinib resistance. RESULTS: cSCCs conserving epithelial traits exhibited strong activation of EGFR signaling, which promoted tumor cell proliferation, in contrast to mesenchymal-like cSCCs. Gefitinib treatment strongly blocked epithelial-like cSCC-PDX growth in the absence of EGFR and RAS mutations, whereas tumors carrying the E545K PIK3CA-activating mutation were resistant to treatment. A subset of initially responding tumors acquired resistance after long-term treatment, which was induced by the bypass from EGFR to FGFR signaling to allow tumor cell proliferation and survival upon gefitinib treatment. Pharmacologic inhibition of FGFR signaling overcame resistance to EGFR inhibitor, even in PIK3CA-mutated tumors. CONCLUSIONS: EGFR-targeted therapy may be appropriate for treating many epithelial-like cSCCs without PIK3CA-activating mutations. Combined EGFR- and FGFR-targeted therapy may be used to treat cSCCs that show intrinsic or acquired resistance to EGFR inhibitors.


Asunto(s)
Resistencia a Antineoplásicos , Gefitinib/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Glandulares y Epiteliales/tratamiento farmacológico , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Apoptosis , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mutación , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Glandulares y Epiteliales/patología , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cancer Microenviron ; 12(2-3): 119-132, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31583529

RESUMEN

In most tumors, cancer cells show the ability to dynamically transit from a non-cancer stem-like cell to a cancer stem-like cell (CSC) state and vice versa. This cell plasticity has been associated with the epithelial-to-mesenchymal transition program (EMT) and can be regulated by tumor cell-intrinsic mechanisms and complex interactions with various tumor microenvironment (TME) components. These interactions favor the generation of a specific "CSC niche" that helps maintain the main properties, phenotypic plasticity and metastatic potential of this subset of tumor cells. For this reason, TME has been recognized as an important promoter of tumor progression and therapy resistance. Tumors have evolved a network of immunosuppressive mechanisms that limits the cytotoxic T cell response to cancer cells. Some key players in this network are tumor-associated macrophages, myeloid-derived suppressor cells and regulatory T cells, which not only favor a pro-tumoral and immunosuppressive environment that supports tumor growth and immune evasion, but also negatively influences immunotherapy. Here, we review the relevance of cytokines and growth factors provided by immunosuppressive immune cells in regulating cancer-cell plasticity. We also discuss how cancer cells remodel their own niche to promote proliferation, stemness and EMT, and escape immune surveillance. A better understanding of CSC-TME crosstalk signaling will enable the development of effective targeted or immune therapies that block tumor growth and metastasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA