Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Evol Biol ; 20(1): 6, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31918666

RESUMEN

BACKGROUND: Understanding the genomic basis of phenotypic diversity can be greatly facilitated by examining adaptive radiations with hypervariable traits. In this study, we focus on a rapidly diverged species group of mormyrid electric fish in the genus Paramormyrops, which are characterized by extensive phenotypic variation in electric organ discharges (EODs). The main components of EOD diversity are waveform duration, complexity and polarity. Using an RNA-sequencing based approach, we sought to identify gene expression correlates for each of these EOD waveform features by comparing 11 specimens of Paramormyrops that exhibit variation in these features. RESULTS: Patterns of gene expression among Paramormyrops are highly correlated, and 3274 genes (16%) were differentially expressed. Using our most restrictive criteria, we detected 145-183 differentially expressed genes correlated with each EOD feature, with little overlap between them. The predicted functions of several of these genes are related to extracellular matrix, cation homeostasis, lipid metabolism, and cytoskeletal and sarcomeric proteins. These genes are of significant interest given the known morphological differences between electric organs that underlie differences in the EOD waveform features studied. CONCLUSIONS: In this study, we identified plausible candidate genes that may contribute to phenotypic differences in EOD waveforms among a rapidly diverged group of mormyrid electric fish. These genes may be important targets of selection in the evolution of species-specific differences in mate-recognition signals.


Asunto(s)
Pez Eléctrico/clasificación , Pez Eléctrico/genética , Órgano Eléctrico/fisiología , Perfilación de la Expresión Génica , Animales , Pez Eléctrico/fisiología , Gabón , Expresión Génica , Genoma , Fenotipo , Reproducción , Especificidad de la Especie
2.
BMC Evol Biol ; 17(1): 51, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28193153

RESUMEN

BACKGROUND: Nocturnally active gymnotiform weakly electric fish generate electric signals for communication and navigation, which can be energetically taxing. These fish mainly inhabit the Amazon basin, where some species prefer well-oxygenated waters and others live in oxygen-poor, stagnant habitats. The latter species show morphological, physiological, and behavioral adaptations for hypoxia-tolerance. However, there have been no studies of hypoxia tolerance on the molecular level. Globins are classic respiratory proteins. They function principally in oxygen-binding and -delivery in various tissues and organs. Here, we investigate the molecular evolution of alpha and beta hemoglobins, myoglobin, and neuroglobin in 12 gymnotiforms compared with other teleost fish. RESULTS: The present study identified positively selected sites (PSS) on hemoglobin (Hb) and myoglobin (Mb) genes using different maximum likelihood (ML) methods; some PSS fall in structurally important protein regions. This evidence for the positive selection of globin genes suggests that the adaptive evolution of these genes has helped to enhance the capacity for oxygen storage and transport. Interestingly, a substitution of a Cys at a key site in the obligate air-breathing electric eel (Electrophorus electricus) is predicted to enhance oxygen storage of Mb and contribute to NO delivery during hypoxia. A parallel Cys substitution was also noted in an air-breathing African electric fish (Gymnarchus niloticus). Moreover, the expected pattern under normoxic conditions of high expression of myoglobin in heart and neuroglobin in the brain in two hypoxia-tolerant species suggests that the main effect of selection on these globin genes is on their sequence rather than their basal expression patterns. CONCLUSION: Results indicate a clear signature of positive selection in the globin genes of most hypoxia-tolerant gymnotiform fishes, which are obligate or facultative air breathers. These findings highlight the critical role of globin genes in hypoxia tolerance evolution of Gymnotiform electric fishes.


Asunto(s)
Pez Eléctrico/genética , Evolución Molecular , Globinas/genética , Adaptación Fisiológica , Animales , Evolución Biológica , Pez Eléctrico/fisiología , Globinas/metabolismo , Hemoglobinas/genética , Hipoxia/genética , Proteínas del Tejido Nervioso/genética , Neuroglobina , Oxígeno
3.
G3 (Bethesda) ; 13(3)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36529459

RESUMEN

Gene duplication and subsequent molecular evolution can give rise to taxon-specific gene specializations. In previous work, we found evidence that African weakly electric fish (Mormyridae) may have as many as three copies of the epdl2 gene, and the expression of two epdl2 genes is correlated with electric signal divergence. Epdl2 belongs to the ependymin-related family (EPDR), a functionally diverse family of secretory glycoproteins. In this study, we first describe vertebrate EPDR evolution and then present a detailed evolutionary history of epdl2 in Mormyridae with emphasis on the speciose genus Paramormyrops. Using Sanger sequencing, we confirm three apparently functional epdl2 genes in Paramormyrops kingsleyae. Next, we developed a nanopore-based amplicon sequencing strategy and bioinformatics pipeline to obtain and classify full-length epdl2 gene sequences (N = 34) across Mormyridae. Our phylogenetic analysis proposes three or four epdl2 paralogs dating from early Paramormyrops evolution. Finally, we conducted selection tests which detected positive selection around the duplication events and identified ten sites likely targeted by selection in the resulting paralogs. These sites' locations in our modeled 3D protein structure involve four sites in ligand binding and six sites in homodimer formation. Together, these findings strongly imply an evolutionary mechanism whereby epdl2 genes underwent selection-driven functional specialization after tandem duplications in the rapidly speciating Paramormyrops. Considering previous evidence, we propose that epdl2 may contribute to electric signal diversification in mormyrids, an important aspect of species recognition during mating.


Asunto(s)
Pez Eléctrico , Animales , Pez Eléctrico/genética , Filogenia , Proteínas del Tejido Nervioso/genética , Evolución Molecular , Duplicación de Gen
4.
Nat Genet ; 53(9): 1373-1384, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34462605

RESUMEN

The bowfin (Amia calva) is a ray-finned fish that possesses a unique suite of ancestral and derived phenotypes, which are key to understanding vertebrate evolution. The phylogenetic position of bowfin as a representative of neopterygian fishes, its archetypical body plan and its unduplicated and slowly evolving genome make bowfin a central species for the genomic exploration of ray-finned fishes. Here we present a chromosome-level genome assembly for bowfin that enables gene-order analyses, settling long-debated neopterygian phylogenetic relationships. We examine chromatin accessibility and gene expression through bowfin development to investigate the evolution of immune, scale, respiratory and fin skeletal systems and identify hundreds of gene-regulatory loci conserved across vertebrates. These resources connect developmental evolution among bony fishes, further highlighting the bowfin's importance for illuminating vertebrate biology and diversity in the genomic era.


Asunto(s)
Evolución Biológica , Evolución Molecular , Genoma/genética , Rajidae/genética , Rajidae/fisiología , Animales , Cromatina/genética , Peces , Rajidae/inmunología , Secuenciación Completa del Genoma
5.
Genome Biol Evol ; 9(12): 3525-3530, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29240929

RESUMEN

Several studies have begun to elucidate the genetic and developmental processes underlying major vertebrate traits. Few of these traits have evolved repeatedly in vertebrates, preventing the analysis of molecular mechanisms underlying these traits comparatively. Electric organs have evolved multiple times among vertebrates, presenting a unique opportunity to understand the degree of constraint and repeatability of the evolutionary processes underlying novel vertebrate traits. As there is now a completed genome sequence representing South American electric eels, we were motivated to obtain genomic sequence from a linage that independently evolved electric organs to facilitate future comparative analyses of the evolution and development of electric organs. We report here the sequencing and de novo assembly of the genome of the mormyrid Paramormyrops kingsleyae using short-read sequencing. In addition, we have completed a somatic transcriptome from 11 tissues to construct a gene expression atlas of predicted genes from this assembly, enabling us to identify candidate housekeeping genes as well as genes differentially expressed in the major somatic tissues of the mormyrid electric fish. We anticipate that this resource will greatly facilitate comparative studies on the evolution and development of electric organs and electroreceptors.


Asunto(s)
Evolución Biológica , Pez Eléctrico/genética , Proteínas de Peces/genética , Perfilación de la Expresión Génica , Animales , Regulación de la Expresión Génica , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Filogenia , Transcriptoma
6.
J Physiol Paris ; 110(3 Pt B): 259-272, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27769923

RESUMEN

Electric fish have served as a model system in biology since the 18th century, providing deep insight into the nature of bioelectrogenesis, the molecular structure of the synapse, and brain circuitry underlying complex behavior. Neuroethologists have collected extensive phenotypic data that span biological levels of analysis from molecules to ecosystems. This phenotypic data, together with genomic resources obtained over the past decades, have motivated new and exciting hypotheses that position the weakly electric fish model to address fundamental 21st century biological questions. This review article considers the molecular data collected for weakly electric fish over the past three decades, and the insights that data of this nature has motivated. For readers relatively new to molecular genetics techniques, we also provide a table of terminology aimed at clarifying the numerous acronyms and techniques that accompany this field. Next, we pose a research agenda for expanding genomic resources for electric fish research over the next 10years. We conclude by considering some of the exciting research prospects for neuroethology that electric fish genomics may offer over the coming decades, if the electric fish community is successful in these endeavors.


Asunto(s)
Pez Eléctrico/genética , Etología/tendencias , Genoma/genética , Animales , Genómica , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA