Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 147(6): 1397-407, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22153081

RESUMEN

Bipolar spindles must separate chromosomes by the appropriate distance during cell division, but mechanisms determining spindle length are poorly understood. Based on a 2D model of meiotic spindle assembly, we predicted that higher localized microtubule (MT) depolymerization rates could generate the shorter spindles observed in egg extracts of X. tropicalis compared to X. laevis. We found that katanin-dependent MT severing was increased in X. tropicalis, which, unlike X. laevis, lacks an inhibitory phosphorylation site in the katanin p60 catalytic subunit. Katanin inhibition lengthened spindles in both species. In X. tropicalis, k-fiber MT bundles that connect to chromosomes at their kinetochores extended through spindle poles, disrupting them. In both X. tropicalis extracts and the spindle simulation, a balance between k-fiber number and MT depolymerization is required to maintain spindle morphology. Thus, mechanisms have evolved in different species to scale spindle size and coordinate regulation of multiple MT populations in order to generate a robust steady-state structure.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Huso Acromático/metabolismo , Xenopus laevis/fisiología , Xenopus/fisiología , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Animales , Extractos Celulares , Humanos , Katanina , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Tamaño de los Orgánulos , Fosforilación , Alineación de Secuencia , Especificidad de la Especie
3.
J Cell Biol ; 191(7): 1239-49, 2010 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-21173114

RESUMEN

The metaphase spindle is a dynamic bipolar structure crucial for proper chromosome segregation, but how microtubules (MTs) are organized within the bipolar architecture remains controversial. To explore MT organization along the pole-to-pole axis, we simulated meiotic spindle assembly in two dimensions using dynamic MTs, a MT cross-linking force, and a kinesin-5-like motor. The bipolar structures that form consist of antiparallel fluxing MTs, but spindle pole formation requires the addition of a NuMA-like minus-end cross-linker and directed transport of MT depolymerization activity toward minus ends. Dynamic instability and minus-end depolymerization generate realistic MT lifetimes and a truncated exponential MT length distribution. Keeping the number of MTs in the simulation constant, we explored the influence of two different MT nucleation pathways on spindle organization. When nucleation occurs throughout the spindle, the simulation quantitatively reproduces features of meiotic spindles assembled in Xenopus egg extracts.


Asunto(s)
Meiosis/fisiología , Microtúbulos/metabolismo , Modelos Biológicos , Huso Acromático/fisiología , Xenopus laevis , Algoritmos , Animales , Simulación por Computador , Dineínas/metabolismo , Cinesinas/metabolismo , Cinética , Proteínas Nucleares/metabolismo , Óvulo/metabolismo , Proteínas de Xenopus/metabolismo
4.
Cell ; 128(2): 357-68, 2007 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-17254972

RESUMEN

Microtubule (MT) nucleation not only occurs from centrosomes, but also in large part from dispersed nucleation sites. The subsequent sorting of short MTs into networks like the mitotic spindle requires molecular motors that laterally slide overlapping MTs and bundling proteins that statically connect MTs. How bundling proteins interfere with MT sliding is unclear. In bipolar MT bundles in fission yeast, we found that the bundler ase1p localized all along the length of antiparallel MTs, whereas the motor klp2p (kinesin-14) accumulated only at MT plus ends. Consequently, sliding forces could only overcome resistant bundling forces for short, newly nucleated MTs, which were transported to their correct position within bundles. Ase1p thus regulated sliding forces based on polarity and overlap length, and computer simulations showed these mechanisms to be sufficient to generate stable bipolar bundles. By combining motor and bundling proteins, cells can thus dynamically organize stable regions of overlap between cytoskeletal filaments.


Asunto(s)
Proteínas Portadoras/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Proteínas Motoras Moleculares/metabolismo , Schizosaccharomyces/metabolismo , Huso Acromático/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Sitios de Unión , Proteínas Portadoras/genética , Polaridad Celular/fisiología , Simulación por Computador , Corriente Citoplasmática/fisiología , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/ultraestructura , Proteínas Motoras Moleculares/genética , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/genética , Huso Acromático/ultraestructura , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA