Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur Heart J ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115049

RESUMEN

BACKGROUND AND AIMS: Type 1 long QT syndrome (LQT1) is caused by pathogenic variants in the KCNQ1-encoded Kv7.1 potassium channels, which pathologically prolong ventricular action potential duration (APD). Herein, the pathologic phenotype in transgenic LQT1 rabbits is rescued using a novel KCNQ1 suppression-replacement (SupRep) gene therapy. METHODS: KCNQ1-SupRep gene therapy was developed by combining into a single construct a KCNQ1 shRNA (suppression) and an shRNA-immune KCNQ1 cDNA (replacement), packaged into adeno-associated virus serotype 9, and delivered in vivo via an intra-aortic root injection (1E10 vg/kg). To ascertain the efficacy of SupRep, 12-lead electrocardiograms were assessed in adult LQT1 and wild-type (WT) rabbits and patch-clamp experiments were performed on isolated ventricular cardiomyocytes. RESULTS: KCNQ1-SupRep treatment of LQT1 rabbits resulted in significant shortening of the pathologically prolonged QT index (QTi) towards WT levels. Ventricular cardiomyocytes isolated from treated LQT1 rabbits demonstrated pronounced shortening of APD compared to LQT1 controls, leading to levels similar to WT (LQT1-UT vs. LQT1-SupRep, P < .0001, LQT1-SupRep vs. WT, P = ns). Under ß-adrenergic stimulation with isoproterenol, SupRep-treated rabbits demonstrated a WT-like physiological QTi and APD90 behaviour. CONCLUSIONS: This study provides the first animal-model, proof-of-concept gene therapy for correction of LQT1. In LQT1 rabbits, treatment with KCNQ1-SupRep gene therapy normalized the clinical QTi and cellular APD90 to near WT levels both at baseline and after isoproterenol. If similar QT/APD correction can be achieved with intravenous administration of KCNQ1-SupRep gene therapy in LQT1 rabbits, these encouraging data should compel continued development of this gene therapy for patients with LQT1.

2.
Europace ; 25(5)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37099628

RESUMEN

AIMS: Current long QT syndrome (LQTS) therapy, largely based on beta-blockade, does not prevent arrhythmias in all patients; therefore, novel therapies are warranted. Pharmacological inhibition of the serum/glucocorticoid-regulated kinase 1 (SGK1-Inh) has been shown to shorten action potential duration (APD) in LQTS type 3. We aimed to investigate whether SGK1-Inh could similarly shorten APD in LQTS types 1 and 2. METHODS AND RESULTS: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hiPSC-cardiac cell sheets (CCS) were obtained from LQT1 and LQT2 patients; CMs were isolated from transgenic LQT1, LQT2, and wild-type (WT) rabbits. Serum/glucocorticoid-regulated kinase 1 inhibition effects (300 nM-10 µM) on field potential durations (FPD) were investigated in hiPSC-CMs with multielectrode arrays; optical mapping was performed in LQT2 CCS. Whole-cell and perforated patch clamp recordings were performed in isolated LQT1, LQT2, and WT rabbit CMs to investigate SGK1-Inh (3 µM) effects on APD. In all LQT2 models across different species (hiPSC-CMs, hiPSC-CCS, and rabbit CMs) and independent of the disease-causing variant (KCNH2-p.A561V/p.A614V/p.G628S/IVS9-28A/G), SGK1-Inh dose-dependently shortened FPD/APD at 0.3-10 µM (by 20-32%/25-30%/44-45%). Importantly, in LQT2 rabbit CMs, 3 µM SGK1-Inh normalized APD to its WT value. A significant FPD shortening was observed in KCNQ1-p.R594Q hiPSC-CMs at 1/3/10 µM (by 19/26/35%) and in KCNQ1-p.A341V hiPSC-CMs at 10 µM (by 29%). No SGK1-Inh-induced FPD/APD shortening effect was observed in LQT1 KCNQ1-p.A341V hiPSC-CMs or KCNQ1-p.Y315S rabbit CMs at 0.3-3 µM. CONCLUSION: A robust SGK1-Inh-induced APD shortening was observed across different LQT2 models, species, and genetic variants but less consistently in LQT1 models. This suggests a genotype- and variant-specific beneficial effect of this novel therapeutic approach in LQTS.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Animales , Humanos , Conejos , Glucocorticoides , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Arritmias Cardíacas/genética , Miocitos Cardíacos/fisiología , Potenciales de Acción/fisiología
3.
Am J Physiol Heart Circ Physiol ; 320(3): H1156-H1169, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33449852

RESUMEN

The TRPV4 channel is a calcium-permeable channel (PCa/PNa ∼ 10). Its expression has been reported in ventricular myocytes, where it is involved in several cardiac pathological mechanisms. In this study, we investigated the implication of TRPV4 in ventricular electrical activity. Left ventricular myocytes were isolated from trpv4+/+ and trpv4-/- mice. TRPV4 membrane expression and its colocalization with L-type calcium channels (Cav1.2) was confirmed using Western blot biotinylation, immunoprecipitation, and immunostaining experiments. Then, electrocardiograms (ECGs) and patch-clamp recordings showed shortened QTc and action potential (AP) duration in trpv4-/- compared with trpv4+/+ mice. Thus, TRPV4 activator GSK1016790A produced a transient and dose-dependent increase in AP duration at 90% of repolarization (APD90) in trpv4+/+ but not in trpv4-/- myocytes or when combined with TRPV4 inhibitor GSK2193874 (100 nM). Hence, GSK1016790A increased calcium transient (CaT) amplitude in trpv4+/+ but not in trpv4-/- myocytes, suggesting that TRPV4 carries an inward Ca2+ current in myocytes. Conversely, TRPV4 inhibitor GSK2193874 (100 nM) alone reduced APD90 in trpv4+/+ but not in trpv4-/- myocytes, suggesting that TRPV4 prolongs AP duration in basal condition. Finally, introducing TRPV4 parameters in a mathematical model predicted the development of an inward TRPV4 current during repolarization that increases AP duration and CaT amplitude, in accord with what was found experimentally. This study shows for the first time that TRPV4 modulates AP and QTc durations. It would be interesting to evaluate whether TRPV4 could be involved in long QT-mediated ventricular arrhythmias.NEW & NOTEWORTHY Transient receptor potential vanilloid 4 (TRPV4) is expressed at the membrane of mouse ventricular myocytes and colocalizes with non-T-tubular L-type calcium channels. Deletion of trpv4 gene in mice results in shortened QT interval on electrocardiogram and reduced action potential duration of ventricular myocytes. Pharmacological activation of TRPV4 channel leads to increased action potential duration and increased calcium transient amplitude in trpv4-/- but not in trpv4-/- ventricular myocytes. To the contrary, TRPV4 channel pharmacological inhibition reduces action potential duration in trpv4+/+ but not in trpv4-/- myocytes. Integration of TRPV4 channel in a computational model of mouse action potential shows that the channel carries an inward current contributing to slowing down action potential repolarization and to increase calcium transient amplitude, similarly to what is observed experimentally. This study highlights for the first time the involvement of TRPV4 channel in ventricular electrical activity.


Asunto(s)
Potenciales de Acción , Señalización del Calcio , Frecuencia Cardíaca , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPV/metabolismo , Función Ventricular Izquierda , Potenciales de Acción/efectos de los fármacos , Animales , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Simulación por Computador , Células HEK293 , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Leucina/análogos & derivados , Leucina/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Piperidinas/farmacología , Quinolinas/farmacología , Sulfonamidas/farmacología , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacos
4.
Sci Rep ; 14(1): 15244, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956407

RESUMEN

TREK-1 is a mechanosensitive channel activated by polyunsaturated fatty acids (PUFAs). Its activation is supposed to be linked to changes in membrane tension following PUFAs insertion. Here, we compared the effect of 11 fatty acids and ML402 on TREK-1 channel activation using the whole cell and the inside-out configurations of the patch-clamp technique. Firstly, TREK-1 activation by PUFAs is variable and related to the variable constitutive activity of TREK-1. We observed no correlation between TREK-1 activation and acyl chain length or number of double bonds suggesting that the bilayer-couple hypothesis cannot explain by itself the activation of TREK-1 by PUFAs. The membrane fluidity measurement is not modified by PUFAs at 10 µM. The spectral shift analysis in TREK-1-enriched microsomes indicates a KD,TREK1 at 44 µM of C22:6 n-3. PUFAs display the same activation and reversible kinetics than the direct activator ML402 and activate TREK-1 in both whole-cell and inside-out configurations of patch-clamp suggesting that the binding site of PUFAs is accessible from both sides of the membrane, as for ML402. Finally, we proposed a two steps mechanism: first, insertion into the membrane, with no fluidity or curvature modifications at 10 µM, and then interaction with TREK-1 channel to open it.


Asunto(s)
Ácidos Grasos Insaturados , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/farmacología , Humanos , Células HEK293 , Técnicas de Placa-Clamp , Fluidez de la Membrana/efectos de los fármacos
5.
Heart Rhythm ; 20(6): 910-917, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36889623

RESUMEN

BACKGROUND: Long QT syndrome type 2 (LQT2) is caused by pathogenic variants in KCNH2. LQT2 may manifest as QT prolongation on an electrocardiogram and present with arrhythmic syncope/seizures and sudden cardiac arrest/death. Progestin-based oral contraceptives may increase the risk of LQT2-triggered cardiac events in women. We previously reported on a woman with LQT2 and recurrent cardiac events temporally related and attributed to the progestin-based contraceptive medroxyprogesterone acetate ("Depo-Provera" [Depo] MilliporeSigma, Catalog# 1378001, St. Louis, MO). OBJECTIVE: The purpose of this study was to evaluate the arrhythmic risk of Depo in a patient-specific induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model of LQT2. METHODS: An iPSC-CM line was generated from a 40-year-old woman with p.G1006Afs∗49-KCNH2. A CRISPR/Cas9 gene-edited/variant-corrected isogenic control iPSC-CM line was generated. FluoVolt (Invitrogen, F10488, Waltham, MA) was used to measure the action potential duration after treatment with 10 µM Depo. Erratic beating patterns characterized as alternating spike amplitudes, alternans, or early afterdepolarization-like phenomena were assessed using multielectrode array (MEA) after 10 µM Depo, 1 µM isoproterenol (ISO), or combined Depo + ISO treatment. RESULTS: Depo treatment shortened the action potential duration at 90% repolarization of G1006Afs∗49 iPSC-CMs from 394 ± 10 to 303 ± 10 ms (P < .0001). Combined Depo + ISO treatment increased the percentage of electrodes displaying erratic beating in G1006Afs∗49 iPSC-CMs (baseline: 18% ± 5% vs Depo + ISO: 54% ± 5%; P < .0001) but not in isogenic control iPSC-CMs (baseline: 0% ± 0% vs Depo + ISO: 10% ± 3%; P = .9659). CONCLUSION: This cell study provides a potential mechanism for the patient's clinically documented Depo-associated episodes of recurrent ventricular fibrillation. This in vitro data should prompt a large-scale clinical assessment of Depo's potential proarrhythmic effect in women with LQT2.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Humanos , Femenino , Adulto , Acetato de Medroxiprogesterona/farmacología , Progestinas , Miocitos Cardíacos , Anticonceptivos Orales , Arritmias Cardíacas , Síndrome de QT Prolongado/genética
6.
Front Cardiovasc Med ; 10: 1293032, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028448

RESUMEN

Background: The Langendorff-perfused ex-vivo isolated heart model has been extensively used to study cardiac function for many years. However, electrical and mechanical function are often studied separately-despite growing proof of a complex electro-mechanical interaction in cardiac physiology and pathology. Therefore, we developed an isolated mouse heart perfusion system that allows simultaneous recording of electrical and mechanical function. Methods: Isolated mouse hearts were mounted on a Langendorff setup and electrical function was assessed via a pseudo-ECG and an octapolar catheter inserted in the right atrium and ventricle. Mechanical function was simultaneously assessed via a balloon inserted into the left ventricle coupled with pressure determination. Hearts were then submitted to an ischemia-reperfusion protocol. Results: At baseline, heart rate, PR and QT intervals, intra-atrial and intra-ventricular conduction times, as well as ventricular effective refractory period, could be measured as parameters of cardiac electrical function. Left ventricular developed pressure (DP), left ventricular work (DP-heart rate product) and maximal velocities of contraction and relaxation were used to assess cardiac mechanical function. Cardiac arrhythmias were observed with episodes of bigeminy during which DP was significantly increased compared to that of sinus rhythm episodes. In addition, the extrasystole-triggered contraction was only 50% of that of sinus rhythm, recapitulating the "pulse deficit" phenomenon observed in bigeminy patients. After ischemia, the mechanical function significantly decreased and slowly recovered during reperfusion while most of the electrical parameters remained unchanged. Finally, the same electro-mechanical interaction during episodes of bigeminy at baseline was observed during reperfusion. Conclusion: Our modified Langendorff setup allows simultaneous recording of electrical and mechanical function on a beat-to-beat scale and can be used to study electro-mechanical interaction in isolated mouse hearts.

7.
Cells ; 11(7)2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35406677

RESUMEN

BACKGROUND: Sinoatrial node cells (SANC) automaticity is generated by functional association between the activity of plasmalemmal ion channels and local diastolic intracellular Ca2+ release (LCR) from ryanodine receptors. Strikingly, most isolated SANC exhibit a "dormant" state, whereas only a fraction shows regular firing as observed in intact SAN. Recent studies showed that ß-adrenergic stimulation can initiate spontaneous firing in dormant SANC, though this mechanism is not entirely understood. METHODS: To investigate the role of L-type Cav1.3 Ca2+ channels in the adrenergic regulation of automaticity in dormant SANC, we used a knock-in mouse strain in which the sensitivity of L-type Cav1.2 α1 subunits to dihydropyridines (DHPs) was inactivated (Cav1.2DHP-/-), enabling the selective pharmacological inhibition of Cav1.3 by DHPs. RESULTS: In dormant SANC, ß-adrenergic stimulation with isoproterenol (ISO) induced spontaneous action potentials (AP) and Ca2+ transients, which were completely arrested with concomitant perfusion of the DHP nifedipine. In spontaneously firing SANC at baseline, Cav1.3 inhibition completely reversed the effect of ß-adrenergic stimulation on AP and the frequency of Ca2+ transients. Confocal calcium imaging of SANC showed that the ß-adrenergic-induced synchronization of LCRs is regulated by the activity of Cav1.3 channels. CONCLUSIONS: Our study shows a novel role of Cav1.3 channels in initiating and maintaining automaticity in dormant SANC upon ß-adrenergic stimulation.


Asunto(s)
Adrenérgicos , Nodo Sinoatrial , Adrenérgicos/farmacología , Animales , Calcio/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina , Nodo Sinoatrial/metabolismo
8.
Sci Rep ; 10(1): 18906, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144668

RESUMEN

Cardiac automaticity is set by pacemaker activity of the sinus node (SAN). In addition to the ubiquitously expressed cardiac voltage-gated L-type Cav1.2 Ca2+ channel isoform, pacemaker cells within the SAN and the atrioventricular node co-express voltage-gated L-type Cav1.3 and T-type Cav3.1 Ca2+ channels (SAN-VGCCs). The role of SAN-VGCCs in automaticity is incompletely understood. We used knockout mice carrying individual genetic ablation of Cav1.3 (Cav1.3-/-) or Cav3.1 (Cav3.1-/-) channels and double mutant Cav1.3-/-/Cav3.1-/- mice expressing only Cav1.2 channels. We show that concomitant loss of SAN-VGCCs prevents physiological SAN automaticity, blocks impulse conduction and compromises ventricular rhythmicity. Coexpression of SAN-VGCCs is necessary for impulse formation in the central SAN. In mice lacking SAN-VGCCs, residual pacemaker activity is predominantly generated in peripheral nodal and extranodal sites by f-channels and TTX-sensitive Na+ channels. In beating SAN cells, ablation of SAN-VGCCs disrupted late diastolic local intracellular Ca2+ release, which demonstrates an important role for these channels in supporting the sarcoplasmic reticulum based "Ca2+ clock" mechanism during normal pacemaking. These data implicate an underappreciated role for co-expression of SAN-VGCCs in heart automaticity and define an integral role for these channels in mechanisms that control the heartbeat.


Asunto(s)
Nodo Atrioventricular/fisiopatología , Bradicardia/diagnóstico , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo T/genética , Nodo Sinoatrial/fisiopatología , Animales , Bradicardia/genética , Bradicardia/fisiopatología , Calcio/metabolismo , Modelos Animales de Enfermedad , Electrocardiografía , Frecuencia Cardíaca , Ratones , Ratones Noqueados , Retículo Sarcoplasmático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA