Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
New Phytol ; 209(4): 1470-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26467445

RESUMEN

Isoform 3 of sucrose synthase (SUS3) is highly expressed in guard cells; however, the precise function of SUS3 in this cell type remains to be elucidated. Here, we characterized transgenic Nicotiana tabacum plants overexpressing SUS3 under the control of the stomatal-specific KST1 promoter, and investigated the changes in guard cell metabolism during the dark to light transition. Guard cell-specific SUS3 overexpression led to increased SUS activity, stomatal aperture, stomatal conductance, transpiration rate, net photosynthetic rate and growth. Although only minor changes were observed in the metabolite profile in whole leaves, an increased fructose level and decreased organic acid levels and sucrose to fructose ratio were observed in guard cells of transgenic lines. Furthermore, guard cell sucrose content was lower during light-induced stomatal opening. In a complementary approach, we incubated guard cell-enriched epidermal fragments in (13) C-NaHCO3 and followed the redistribution of label during dark to light transitions; this revealed increased labeling in metabolites of, or associated with, the tricarboxylic acid cycle. The results suggest that sucrose breakdown is a mechanism to provide substrate for the provision of organic acids for respiration, and imply that manipulation of guard cell metabolism may represent an effective strategy for plant growth improvement.


Asunto(s)
Glucosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Estomas de Plantas/citología , Solanum tuberosum/enzimología , Sacarosa/metabolismo , Regulación hacia Arriba , Adaptación Fisiológica , Isótopos de Carbono , Ácidos Carboxílicos/metabolismo , Sequías , Gases/metabolismo , Glucosiltransferasas/genética , Cinética , Luz , Metaboloma , Metabolómica , Especificidad de Órganos , Fenotipo , Desarrollo de la Planta , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Transpiración de Plantas/fisiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Nicotiana/genética
2.
Plant Cell Environ ; 38(11): 2353-71, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25871738

RESUMEN

Transcriptomic and proteomic studies have improved our knowledge of guard cell function; however, metabolic changes in guard cells remain relatively poorly understood. Here we analysed metabolic changes in guard cell-enriched epidermal fragments from tobacco during light-induced stomatal opening. Increases in sucrose, glucose and fructose were observed during light-induced stomatal opening in the presence of sucrose in the medium while no changes in starch were observed, suggesting that the elevated fructose and glucose levels were a consequence of sucrose rather than starch breakdown. Conversely, reduction in sucrose was observed during light- plus potassium-induced stomatal opening. Concomitant with the decrease in sucrose, we observed an increase in the level as well as in the (13) C enrichment in metabolites of, or associated with, the tricarboxylic acid cycle following incubation of the guard cell-enriched preparations in (13) C-labelled bicarbonate. Collectively, the results obtained support the hypothesis that sucrose is catabolized within guard cells in order to provide carbon skeletons for organic acid production. Furthermore, they provide a qualitative demonstration that CO2 fixation occurs both via ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPcase). The combined data are discussed with respect to current models of guard cell metabolism and function.


Asunto(s)
Dióxido de Carbono/metabolismo , Nicotiana/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Estomas de Plantas/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Sacarosa/metabolismo , Cinética , Células Vegetales/metabolismo , Células Vegetales/fisiología , Estomas de Plantas/efectos de la radiación , Nicotiana/citología
3.
Funct Integr Genomics ; 13(3): 379-89, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23835851

RESUMEN

New races of coffee rust are overcoming resistance genes available in germplasm and cultivated cultivars and bringing recently some coffee-producing countries in severe economic challenge. The objective of this study was to identify the genes that are linked to host resistance to the major coffee rust race II. In our study, we have identified and studied a segregating population that has a single monogenic resistant gene to coffee rust. Coffee leaves of parents, resistant, and susceptible genotypes of the F2 generation plants were inoculated with pathogen spores. A differential analysis was performed by combined cDNA-AFLP and bulk segregant analysis (BSA) in pooled samples collected 48 and 72 h postinoculation, increasing the selectiveness for differential gene expression. Of 108 differential expressed genes, between 33,000 gene fragments analyzed, 108 differential expressed genes were identified in resistant plants. About 20 and 22 % of these resistant-correlated genes are related to signaling and defense genes, respectively. Between signaling genes, the major subclass corresponds to receptor and resistant homolog genes, like nucleotide-binding site leucine-rich repeat (NBS-LRR), Pto-like, RLKs, Bger, and RGH1A, all not previously described in coffee rust responses. The second major subclass included kinases, where two mitogen-activated kinases (MAPK) are identified. Further gene expression analysis was performed for 21 selected genes by real-time PCR gene expression analysis at 0, 12, 24, 48, and 72 h postinoculation. The expression of genes involved in signaling and defense was higher at 24 and 72 h after inoculation, respectively. The NBS-LRR was the more differentially expressed gene between the signaling genes (four times more expressed in the resistant genotype), and thraumatin (PR5) was the more expressed between all genes (six times more expressed). Multivariate analysis reinforces the significance of the temporal separation of identified signaling and defense genes: early expression of signaling genes support the hypothesis that higher expression of the signaling components up regulates the defense genes identified. Additionally the increased gene expression of these two gene sets is associated with a single monogenic resistance trait to to leaf coffee rust in the interaction characterized here.


Asunto(s)
Café/genética , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Basidiomycota/genética , Basidiomycota/patogenicidad , Café/crecimiento & desarrollo , Café/microbiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología
4.
Plant Cell Environ ; 35(4): 747-59, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21999376

RESUMEN

As water availability for agriculture decreases, breeding or engineering of crops with improved water use efficiency (WUE) will be necessary. As stomata are responsible for controlling gas exchange across the plant epidermis, metabolic processes influencing solute accumulation in guard cells are potential targets for engineering. In addition to its role as an osmoticum, sucrose breakdown may be required for synthesis of other osmotica or generation of the ATP needed for solute uptake. Thus, alterations in partitioning of sucrose between storage and breakdown may affect stomatal function. In agreement with this hypothesis, potato (Solanum tuberosum) plants expressing an antisense construct targeted against sucrose synthase 3 (SuSy3) exhibited decreased stomatal conductance, a slight reduction in CO(2) fixation and increased WUE. Conversely, plants with increased guard cell acid invertase activity caused by the introduction of the SUC2 gene from yeast had increased stomatal conductance, increased CO(2) fixation and decreased WUE. (14)CO(2) feeding experiments indicated that these effects cannot be attributed to alterations in photosynthetic capacity, and most likely reflect alterations in stomatal function. These results highlight the important role that sucrose breakdown may play in guard cell function and indicate the feasibility of manipulating plant WUE through engineering of guard cell sucrose metabolism.


Asunto(s)
Glucosiltransferasas/metabolismo , Estomas de Plantas/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Solanum tuberosum/enzimología , Sacarosa/metabolismo , Agua/fisiología , beta-Fructofuranosidasa/genética , Dióxido de Carbono/metabolismo , Glucosiltransferasas/genética , Fotosíntesis/fisiología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transpiración de Plantas/fisiología , Plantas Modificadas Genéticamente , ARN sin Sentido/genética , ARN de Planta/genética , Solanum tuberosum/genética , Solanum tuberosum/fisiología
5.
J Exp Bot ; 60(2): 533-46, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19052255

RESUMEN

The ER-resident molecular chaperone BiP (binding protein) was overexpressed in soybean. When plants growing in soil were exposed to drought (by reducing or completely withholding watering) the wild-type lines showed a large decrease in leaf water potential and leaf wilting, but the leaves in the transgenic lines did not wilt and exhibited only a small decrease in water potential. During exposure to drought the stomata of the transgenic lines did not close as much as in the wild type, and the rates of photosynthesis and transpiration became less inhibited than in the wild type. These parameters of drought resistance in the BiP overexpressing lines were not associated with a higher level of the osmolytes proline, sucrose, and glucose. It was also not associated with the typical drought-induced increase in root dry weight. Rather, at the end of the drought period, the BiP overexpressing lines had a lower level of the osmolytes and root weight than the wild type. The mRNA abundance of several typical drought-induced genes [NAC2, a seed maturation protein (SMP), a glutathione-S-transferase (GST), antiquitin, and protein disulphide isomerase 3 (PDI-3)] increased in the drought-stressed wild-type plants. Compared with the wild type, the increase in mRNA abundance of these genes was less (in some genes much less) in the BiP overexpressing lines that were exposed to drought. The effect of drought on leaf senescence was investigated in soybean and tobacco. It had previously been reported that tobacco BiP overexpression or repression reduced or accentuated the effects of drought. BiP overexpressing tobacco and soybean showed delayed leaf senescence during drought. BiP antisense tobacco plants, conversely, showed advanced leaf senescence. It is concluded that BiP overexpression confers resistance to drought, through an as yet unknown mechanism that is related to ER functioning. The delay in leaf senescence by BiP overexpression might relate to the absence of the response to drought.


Asunto(s)
Adaptación Fisiológica , Sequías , Retículo Endoplásmico/metabolismo , Glycine max/fisiología , Nicotiana/fisiología , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Biomarcadores/metabolismo , Calnexina/genética , Calnexina/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Glycine max/efectos de los fármacos , Glycine max/genética , Estrés Fisiológico/efectos de los fármacos , Factores de Tiempo , Nicotiana/efectos de los fármacos , Nicotiana/genética , Transgenes , Agua/farmacología
6.
J Biol Chem ; 283(29): 20209-19, 2008 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-18490446

RESUMEN

NRPs (N-rich proteins) were identified as targets of a novel adaptive pathway that integrates endoplasmic reticulum (ER) and osmotic stress signals based on coordinate regulation and synergistic up-regulation by tunicamycin and polyethylene glycol treatments. This integrated pathway diverges from the molecular chaperone-inducing branch of the unfolded protein response (UPR) in several ways. While UPR-specific targets were inversely regulated by ER and osmotic stresses, NRPs required both signals for full activation. Furthermore, BiP (binding protein) overexpression in soybean prevented activation of the UPR by ER stress inducers, but did not affect activation of NRPs. We also found that this integrated pathway transduces a PCD signal generated by ER and osmotic stresses that result in the appearance of markers associated with leaf senescence. Overexpression of NRPs in soybean protoplasts induced caspase-3-like activity and promoted extensive DNA fragmentation. Furthermore, transient expression of NRPs in planta caused leaf yellowing, chlorophyll loss, malondialdehyde production, ethylene evolution, and induction of the senescence marker gene CP1. This phenotype was alleviated by the cytokinin zeatin, a potent senescence inhibitor. Collectively, these results indicate that ER stress induces leaf senescence through activation of plant-specific NRPs via a novel branch of the ER stress response.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glycine max/citología , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Asparagina/metabolismo , Muerte Celular , Células Cultivadas , Regulación de la Expresión Génica de las Plantas , Genes Reporteros/genética , Ósmosis , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Pliegue de Proteína , Glycine max/genética , Glycine max/crecimiento & desarrollo , Regulación hacia Arriba
7.
Plant Mol Biol ; 65(5): 603-14, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17710554

RESUMEN

The Glycine max sucrose binding protein (GmSBP2) promoter directs vascular tissue-specific expression of reporter genes in transgenic tobacco. Here we showed that an SBP2-GFP fusion protein under the control of the GmSBP2 promoter accumulates in the vascular tissues of vegetative organs, which is consistent with the proposed involvement of SBP in sucrose transport-dependent physiological processes. Through gain-of-function experiments we confirmed that the tissue-specific determinants of the SBP2 promoter reside in the distal cis-regulatory domain A, CRD-A (position -2000 to -700) that is organized into a modular configuration to suppress promoter activity in tissues other than vascular tissues. The four analyzed CRD-A sub-modules, designates Frag II (-1785/-1508), Frag III (-1507/-1237), Frag IV (-1236/-971) and Frag V (-970/-700), act independently to alter the constitutive pattern of -92pSBP2-mediated GUS expression in different organs. Frag V fused to -92pSBP2-GUS restored the tissue-specific pattern of the full-length promoter in the shoot apex, but not in other organs. Likewise, Frag IV confined GUS expression to the vascular bundle of leaves, whereas Frag II mediated vascular specific expression in roots. Strong stem expression-repressing elements were located at positions -1485 to -1212, as Frag III limited GUS expression to the inner phloem. We have also mapped a procambium silencer to the consensus sequence CAGTTnCaAccACATTcCT which is located in both distal and proximal upstream modules. Fusion of either repressing element-containing module to the constitutive -92pSBP2 promoter suppresses GUS expression in the elongation zone of roots. Together our results demonstrate the unusual aspect of distal sequences negatively controlling tissue-specificity of a plant promoter.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Secuencia de Bases , Secuencia de Consenso , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes de Fusión/análisis , Glycine max/metabolismo , TATA Box , Nicotiana/genética
8.
Funct Plant Biol ; 33(11): 1013-1023, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32689312

RESUMEN

Coffee (Coffea arabica L.) plants were grown in small (3-L), medium (10-L) and large (24-L) pots for 115 or 165 d after transplanting (DAT), which allowed different degrees of root restriction. Effects of altered source : sink ratio were evaluated in order to explore possible stomatal and non-stomatal mechanisms of photosynthetic down-regulation. Increasing root restriction brought about large and general reductions in plant growth associated with a rising root : shoot ratio. Treatments did not affect leaf water potential or leaf nutrient status, with the exception of N content, which dropped significantly with increasing root restriction even though an adequate N supply was available. Photosynthesis was severely reduced when plants were grown in small pots; this was largely associated with non-stomatal factors, such as decreased Rubisco activity. At 165 DAT contents of hexose, sucrose, and amino acids decreased in plants grown in smaller pots, while those of starch and hexose-P increased in plants grown in smaller pots. Photosynthetic rates were negatively correlated with the ratio of hexose to free amino acids, but not with hexose content. Activities of acid invertase, sucrose synthase, sucrose-P synthase, fructose-1,6-bisphosphatase, ADP-glucose pyrophosphorylase, starch phosphorylase, glyceraldehyde-3-P dehydrogenase, PPi : fructose-6-P 1-phosphotransferase and NADP : glyceraldehyde-3-P dehydrogenase all decreased with severe root restriction. Glycerate-3-P : Pi and glucose-6-P : fructose-6-P ratios decreased accordingly. Photosynthetic down-regulation was unlikely to have been associated directly with an end-product limitation, but rather with decreases in Rubisco. Such a down-regulation was largely a result of N deficiency caused by growing coffee plants in small pots.

9.
Ann Bot ; 96(1): 101-8, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15888500

RESUMEN

BACKGROUND AND AIMS: Drought is a major environmental constraint affecting growth and production of Coffea canephora. Selection of C. canephora clones has been largely empirical as little is known about how clones respond physiologically to drought. Using clones previously shown to differ in drought tolerance, this study aimed to identify the extent of variation of water use and the mechanisms responsible, particularly those associated morphological traits. * METHODS: Clones (14 and 120, drought-tolerant; 46 and 109A, drought-sensitive, based on their abilities to yield under drought) were grown in 120-L pots until they were 12-months old, when an irrigation and a drought treatment were applied; plants were droughted until the pressure potential (psi(x)) before dawn (pre-dawn) reached -3.0 MPa. Throughout the drought period, psi(x) and stomatal conductance (g(s)) were measured. At the end of the experiment, carbon isotope ratio and parameters from pressure-volume curves were estimated. Morphological traits were also assessed. * KEY RESULTS AND CONCLUSIONS: With irrigation, plant hydraulic conductance (K(L)), midday psi(x) and total biomass were all greater in clones 109A and 120 than in the other clones. Root mass to leaf area ratio was larger in clone 109A than in the others, whereas rooting depth was greater in drought-tolerant than in drought-sensitive clones. Predawn psi(x) of -3.0 MPa was reached fastest by 109A, followed progressively by clones 46, 120 and 14. Decreases in g(s) with declining psi(x), or increasing evaporative demand, were similar for clones 14, 46, and 120, but lower in 109A. Carbon isotope ratio increased under drought; however, it was lower in 109A than in other clones. For all clones, psi(x), g(s) and K(L) recovered rapidly following re-watering. Differences in root depth, K(L) and stomatal control of water use, but not osmotic or elastic adjustments, largely explained the differences in relative tolerance to drought stress of clones 14 and 120 compared with clones 46 and 109A.


Asunto(s)
Coffea/fisiología , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Agua/metabolismo , Coffea/anatomía & histología , Hojas de la Planta/anatomía & histología , Raíces de Plantas/anatomía & histología , Factores de Tiempo
10.
Eur J Biochem ; 269(16): 3998-4008, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12180976

RESUMEN

The sucrose binding protein (SBP) has been implicated as an important component of the sucrose uptake system in plants. SBP-mediated sucrose transport displays unique kinetic features and the protein is not similar to other transport proteins. Here, we report the characterization of a member of the SBP family from soybean [Glycine max (L) Merrill] designated S64 or SBP2. Subcellular fractionation and precipitation by GTP-agarose demonstrated that S64/SBP2 is a membrane-associated protein that exhibits GTP binding activity. Purified recombinant S64/SBP2 protein, expressed as a histidine-tagged protein in Escherichia coli, exhibited nucleotide-binding specificity to guanine nucleotides. The GTP binding site was mapped to an imperfect Walker A type-sequence, Ala279-Leu-Ala-Pro-Thr-Lys-Lys-Ser286, by site-directed mutagenesis. Escherichia coli-produced wild-type protein and a truncated version of the protein containing the putative binding-sequence-bound GTP, although not with the same efficiency. In contrast, replacement of Thr283 and Lys284 residues to Leu and Glu residues prevented GTP binding. The site directed mutant failed to bind GTP but retained the ability to undergo oligomerization andto promote growth of the susy7 yeast strain, deficient inutilizing extracellular sucrose, on medium containing sucrose as the sole carbon source. Our results indicate that GTP binding and sucrose transport by SBP are separable and function independently. The implications of our findings with respect to the function and membrane topology of SBP are discussed.


Asunto(s)
Proteínas de Unión al GTP/fisiología , Glycine max/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Proteínas de Plantas/fisiología , Sacarosa/metabolismo , Secuencia de Aminoácidos , Transporte Biológico , Clonación Molecular , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/inmunología , Proteínas de Unión al GTP/aislamiento & purificación , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/aislamiento & purificación , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/inmunología , Proteínas de Transporte de Membrana/aislamiento & purificación , Microsomas/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas de Plantas/aislamiento & purificación , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
11.
Plant Mol Biol ; 50(4-5): 757-71, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12374306

RESUMEN

The binding protein BiP is an endoplasmic reticulum (ER)-resident member of the HSP70 stress-related protein family, which is essential for the constitutive function of the ER. In addition to responding to a variety of environmental stimuli, plant BiP exhibits a tissue-specific regulation. We have isolated two soybean BiP genomic clones, designated gsBiP6 and gsBiP9, and different extensions of their 5' flanking sequences were fused to beta-glucuronidase (GUS) reporter gene and introduced into Nicotiana tabacum by Agrobacterium tumefaciens-mediated transformation. Transgenic plants displayed prominent GUS activity in the vascular bundles of roots and shoots as well as in regions of intense cell division, such as procambial region and apical meristems. Promoter deletion analyses identified two cis-regulatory functional domains that are important for the spatially-regulated activation of BiP expression under normal plant development. While an AT-rich enhancer-like sequence, designated cis-acting regulatory domain 1, CRD1 (-358 to -211, on gsBiP6), activated expression of the BiP minimal promoter in all organs analyzed, BiP promoter activity in meristematic tissues and phloem cells required the presence of a second activating domain, CRD2 (-211 to -80). Apparently, the CRD2 sequence also harbors negative cis-acting elements, because removal of this region caused activation of gsBiP6 promoter in parenchymatic xylem rays. These results suggest that the tissue-specific control of BiP gene expression requires a complex integration of multiple cis-acting regulatory elements on the promoter.


Asunto(s)
Proteínas Portadoras/genética , Meristema/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas de Arabidopsis , Secuencia de Bases , Secuencia Conservada/genética , ADN de Plantas/química , ADN de Plantas/genética , Retículo Endoplásmico/metabolismo , Células Eucariotas/citología , Células Eucariotas/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/genética , Glucuronidasa/metabolismo , Datos de Secuencia Molecular , Brotes de la Planta/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Glycine max/genética , Glycine max/metabolismo , Nicotiana/genética , Sitio de Iniciación de la Transcripción
12.
J Exp Bot ; 54(393): 2643-53, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14585823

RESUMEN

The sucrose binding protein (SBP) from soybean has been implicated as an important component of the sucrose uptake system. Two SBP genomic clones, gsS641.1 and gsS641.2, which correspond to allelic forms of the GmSBP2/S64 gene, have been isolated and characterized. As a member of the seed storage protein superfamily, it has been shown that the SBP gene structure is similar to vicilin genes with intron/exon boundaries at conserved positions. Fluores cence in situ hybridization (FISH) suggested that the soybean SBP gene family is represented by at least two non-allelic genes corresponding to the previously isolated GmSBP1 and GmSBP2/S64 cDNAs. These two cDNAs share extensive sequence similarity but are located at different loci in the soybean genome. To investigate transcriptional activation of the GmSBP2 gene, 2 kb 5'-flanking sequences of gsS641.1 and gsS641.2 were fused to the beta-glucuronidase (GUS) reporter gene and to the green fluorescent protein (GFP) reporter gene and inde pendently introduced into Nicotiana tabacum by Agrobacterium tumefaciens-mediated transformation. The SBP2 promoter directed expression of both GUS and GFP reporter genes with high specificity to the phloem of leaves, stems and roots. Thus, the overall pattern of SBP-GUS or SBP-GFP expression is consistent with the involvement of SBP in sucrose translocation-dependent physiological processes.


Asunto(s)
Proteínas Portadoras/genética , Genes de Plantas/genética , Glycine max/genética , Proteínas de Transporte de Membrana , Familia de Multigenes , Lectinas de Plantas/genética , Proteínas de Soja/genética , Secuencia de Bases , Biblioteca de Genes , Genoma de Planta , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Mapeo Restrictivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA