Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mov Disord ; 36(5): 1158-1169, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33449381

RESUMEN

BACKGROUND: Paroxysmal dyskinesias (PxDs) are characterized by involuntary movements and altered pre-motor circuit activity. Causative mutations provide a means to understand the molecular basis of PxDs. Yet in many cases, animal models harboring corresponding mutations are lacking. Here we utilize the fruit fly, Drosophila, to study a PxD linked to a gain-of-function (GOF) mutation in the KCNMA1/hSlo1 BK potassium channel. OBJECTIVES: We aimed to recreate the equivalent BK (big potassium) channel mutation in Drosophila. We sought to determine how this mutation altered action potentials (APs) and synaptic release in vivo; to test whether this mutation disrupted pre-motor circuit function and locomotion; and to define neural circuits involved in locomotor disruption. METHODS: We generated a knock-in Drosophila model using homologous recombination. We used electrophysiological recordings and calcium-imaging to assess AP shape, neurotransmission, and the activity of the larval pre-motor central pattern generator (CPG). We used video-tracking and automated systems to measure movement, and developed a genetic method to limit BK channel expression to defined circuits. RESULTS: Neuronal APs exhibited reduced width and an enhanced afterhyperpolarization in the PxD model. We identified calcium-dependent reductions in neurotransmitter release, dysfunction of the CPG, and corresponding alterations in movement, in model larvae. Finally, we observed aberrant locomotion and dyskinesia-like movements in adult model flies, and partially mapped the impact of GOF BK channels on movement to cholinergic neurons. CONCLUSION: Our model supports a link between BK channel GOF and hyperkinetic movements, and provides a platform to dissect the mechanistic basis of PxDs. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Drosophila , Discinesias , Potenciales de Acción/genética , Animales , Fenómenos Electrofisiológicos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética
2.
Neurobiol Dis ; 125: 107-114, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30703437

RESUMEN

Down syndrome (DS) is characterised by abnormal cognitive and motor development, and later in life by progressive Alzheimer's disease (AD)-like dementia, neuropathology, declining motor function and shorter life expectancy. It is caused by trisomy of chromosome 21 (Hsa21), but how individual Hsa21 genes contribute to various aspects of the disorder is incompletely understood. Previous work has demonstrated a role for triplication of the Hsa21 gene DYRK1A in cognitive and motor deficits, as well as in altered neurogenesis and neurofibrillary degeneration in the DS brain, but its contribution to other DS phenotypes is unclear. Here we demonstrate that overexpression of minibrain (mnb), the Drosophila ortholog of DYRK1A, in the Drosophila nervous system accelerated age-dependent decline in motor performance and shortened lifespan. Overexpression of mnb in the eye was neurotoxic and overexpression in ellipsoid body neurons in the brain caused age-dependent neurodegeneration. At the larval neuromuscular junction, an established model for mammalian central glutamatergic synapses, neuronal mnb overexpression enhanced spontaneous vesicular transmitter release. It also slowed recovery from short-term depression of evoked transmitter release induced by high-frequency nerve stimulation and increased the number of boutons in one of the two glutamatergic motor neurons innervating the muscle. These results provide further insight into the roles of DYRK1A triplication in abnormal aging and synaptic dysfunction in DS.


Asunto(s)
Síndrome de Down/genética , Proteínas de Drosophila/genética , Degeneración Nerviosa/genética , Plasticidad Neuronal/genética , Proteínas Serina-Treonina Quinasas/genética , Transmisión Sináptica/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Síndrome de Down/patología , Drosophila , Degeneración Nerviosa/patología , Neuronas/patología
3.
Neurobiol Dis ; 110: 93-101, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29196216

RESUMEN

Down syndrome (DS) is caused by triplication of chromosome 21 (HSA21). It is characterised by intellectual disability and impaired motor coordination that arise from changes in brain volume, structure and function. However, the contribution of each HSA21 gene to these various phenotypes and to the causal alterations in neuronal and synaptic structure and function are largely unknown. Here we have investigated the effect of overexpression of the HSA21 gene DSCAM (Down syndrome cell adhesion molecule), on glutamatergic synaptic transmission and motor coordination, using Drosophila expressing three copies of Dscam1. Electrophysiological recordings of miniature and evoked excitatory junction potentials at the glutamatergic neuromuscular junction of Drosophila larvae showed that the extra copy of Dscam1 changed the properties of spontaneous and electrically-evoked transmitter release and strengthened short-term synaptic depression during high-frequency firing of the motor nerve. Behavioural analyses uncovered impaired locomotor coordination despite preserved gross motor function. This work identifies DSCAM as a candidate causative gene in DS that is sufficient to modify synaptic transmission and synaptic plasticity and cause a DS behavioural phenotype.


Asunto(s)
Moléculas de Adhesión Celular/genética , Proteínas de Drosophila/genética , Locomoción/genética , Plasticidad Neuronal/genética , Transmisión Sináptica/genética , Animales , Modelos Animales de Enfermedad , Síndrome de Down/genética , Drosophila melanogaster , Potenciales Postsinápticos Excitadores/fisiología , Unión Neuromuscular/fisiopatología
4.
Curr Biol ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39053467

RESUMEN

Critical periods are windows of heightened plasticity occurring during neurodevelopment. Alterations in neural activity during these periods can cause long-lasting changes in the structure, connectivity, and intrinsic excitability of neurons, which may contribute to the pathology of neurodevelopmental disorders. However, endogenous regulators of critical periods remain poorly defined. Here, we study this issue using a fruit fly (Drosophila) model of an early-onset movement disorder caused by BK potassium channel gain of function (BK GOF). Deploying a genetic method to place robust expression of GOF BK channels under spatiotemporal control, we show that adult-stage neuronal expression of GOF BK channels minimally disrupts fly movement. In contrast, limiting neuronal expression of GOF BK channels to a short window during late neurodevelopment profoundly impairs locomotion and limb kinematics in resulting adult flies. During this critical period, BK GOF perturbs synaptic localization of the active zone protein Bruchpilot and reduces excitatory neurotransmission. Conversely, enhancing neural activity specifically during development rescues motor defects in BK GOF flies. Collectively, our results reveal a critical developmental period for limb control in Drosophila that is influenced by BK channels and suggest that BK GOF causes movement disorders by disrupting activity-dependent aspects of synaptic development.

5.
Cell Rep ; 21(1): 97-109, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28978487

RESUMEN

Mutations in the Golgi SNARE (SNAP [soluble NSF attachment protein] receptor) protein Membrin (encoded by the GOSR2 gene) cause progressive myoclonus epilepsy (PME). Membrin is a ubiquitous and essential protein mediating ER-to-Golgi membrane fusion. Thus, it is unclear how mutations in Membrin result in a disorder restricted to the nervous system. Here, we use a multi-layered strategy to elucidate the consequences of Membrin mutations from protein to neuron. We show that the pathogenic mutations cause partial reductions in SNARE-mediated membrane fusion. Importantly, these alterations were sufficient to profoundly impair dendritic growth in Drosophila models of GOSR2-PME. Furthermore, we show that Membrin mutations cause fragmentation of the presynaptic cytoskeleton coupled with transsynaptic instability and hyperactive neurotransmission. Our study highlights how dendritic growth is vulnerable even to subtle secretory pathway deficits, uncovers a role for Membrin in synaptic function, and provides a comprehensive explanatory basis for genotype-phenotype relationships in GOSR2-PME.


Asunto(s)
Dendritas/metabolismo , Mutación , Epilepsias Mioclónicas Progresivas/genética , Proteínas Qb-SNARE/genética , Vías Secretoras/genética , Sinapsis/metabolismo , Animales , Dendritas/ultraestructura , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Estudios de Asociación Genética , Aparato de Golgi/metabolismo , Humanos , Masculino , Fusión de Membrana , Epilepsias Mioclónicas Progresivas/metabolismo , Epilepsias Mioclónicas Progresivas/patología , Fenotipo , Cultivo Primario de Células , Proteínas Qb-SNARE/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sinapsis/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA