Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Appl Toxicol ; 36(1): 161-74, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25926378

RESUMEN

Inhalation exposure to multi-walled carbon nanotubes (MWCNT) in mice results in inflammation, fibrosis and the promotion of lung adenocarcinoma; however, the molecular basis behind these pathologies is unknown. This study determined global mRNA and miRNA profiles in whole blood from mice exposed by inhalation to MWCNT that correlated with the presence of lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma. Six-week-old, male, B6C3F1 mice received a single intraperitoneal injection of either the DNA-damaging agent methylcholanthrene (MCA, 10 µg g(-1) body weight) or vehicle (corn oil). One week after injections, mice were exposed by inhalation to MWCNT (5 mg m(-3), 5 hours per day, 5 days per week) or filtered air (control) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for the development of pathological changes in the lung, and whole blood was collected and analyzed using microarray analysis for global mRNA and miRNA expression. Numerous mRNAs and miRNAs in the blood were significantly up- or down-regulated in animals developing pathological changes in the lung after MCA/corn oil administration followed by MWCNT/air inhalation, including fcrl5 and miR-122-5p in the presence of hyperplasia, mthfd2 and miR-206-3p in the presence of fibrosis, fam178a and miR-130a-3p in the presence of bronchiolo-alveolar adenoma, and il7r and miR-210-3p in the presence of bronchiolo-alveolar adenocarcinoma, among others. The changes in miRNA and mRNA expression, and their respective regulatory networks, identified in this study may potentially serve as blood biomarkers for MWCNT-induced lung pathological changes.


Asunto(s)
Adenocarcinoma/genética , Adenoma/genética , Neoplasias Pulmonares/genética , Pulmón/patología , MicroARNs/sangre , Nanotubos de Carbono/toxicidad , Fibrosis Pulmonar/genética , ARN Mensajero/sangre , Adenocarcinoma/etiología , Adenocarcinoma del Pulmón , Animales , Redes Reguladoras de Genes , Hiperplasia , Exposición por Inhalación , Neoplasias Pulmonares/etiología , Masculino , Ratones
2.
Part Fibre Toxicol ; 11: 3, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24405760

RESUMEN

BACKGROUND: Engineered carbon nanotubes are currently used in many consumer and industrial products such as paints, sunscreens, cosmetics, toiletries, electronic processes and industrial lubricants. Carbon nanotubes are among the more widely used nanoparticles and come in two major commercial forms, single-walled carbon nanotubes (SWCNT) and the more rigid, multi-walled carbon nanotubes (MWCNT). The low density and small size of these particles makes respiratory exposures likely. Many of the potential health hazards have not been investigated, including their potential for carcinogenicity. We, therefore, utilized a two stage initiation/promotion protocol to determine whether inhaled MWCNT act as a complete carcinogen and/or promote the growth of cells with existing DNA damage. Six week old, male, B6C3F1 mice received a single intraperitoneal (ip) injection of either the initiator methylcholanthrene(MCA, 10 µg/g BW, i.p.), or vehicle (corn oil). One week after i.p. injections, mice were exposed by inhalation to MWCNT (5 mg/m³, 5 hours/day, 5 days/week) or filtered air (controls) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for lung tumor formation. RESULTS: Twenty-three percent of the filtered air controls, 26.5% of the MWCNT-exposed, and 51.9% of the MCA-exposed mice, had lung bronchiolo-alveolar adenomas and lung adenocarcinomas. The average number of tumors per mouse was 0.25, 0.81 and 0.38 respectively. By contrast, 90.5% of the mice which received MCA followed by MWCNT had bronchiolo-alveolar adenomas and adenocarcinomas with an average of 2.9 tumors per mouse 17 months after exposure. Indeed, 62% of the mice exposed to MCA followed by MWCNT had bronchiolo-alveolar adenocarcinomas compared to 13% of the mice that received filtered air, 22% of the MCA-exposed, or 14% of the MWCNT-exposed. Mice with early morbidity resulting in euthanasia had the highest rate of metastatic disease. Three mice exposed to both MCA and MWCNT that were euthanized early had lung adenocarcinoma with evidence of metastasis (5.5%). Five mice (9%) exposed to MCA and MWCNT and 1 (1.6%) exposed to MCA developed serosal tumors morphologically consistent with sarcomatous mesotheliomas, whereas mice administered MWCNT or air alone did not develop similar neoplasms. CONCLUSIONS: These data demonstrate that some MWCNT exposures promote the growth and neoplastic progression of initiated lung cells in B6C3F1 mice. In this study, the mouse MWCNT lung burden of 31.2 µg/mouse approximates feasible human occupational exposures. Therefore, the results of this study indicate that caution should be used to limit human exposures to MWCNT.


Asunto(s)
Adenocarcinoma/inducido químicamente , Neoplasias Pulmonares/inducido químicamente , Nanotubos de Carbono/toxicidad , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Adenoma/inducido químicamente , Adenoma/patología , Animales , Líquido del Lavado Bronquioalveolar/citología , Técnica del Anticuerpo Fluorescente , Hiperplasia/inducido químicamente , Hiperplasia/patología , Exposición por Inhalación , Pulmón/patología , Neoplasias Pulmonares/patología , Mesotelioma/inducido químicamente , Mesotelioma/patología , Ratones , Ratones Endogámicos , Microscopía de Polarización , Infiltración Neutrófila/efectos de los fármacos , Análisis de Supervivencia
3.
Part Fibre Toxicol ; 11: 6, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24479647

RESUMEN

Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 µg/cm² MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 µm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels.


Asunto(s)
Mutágenos , Nanotubos de Carbono/toxicidad , Exposición Profesional , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Cromosomas/efectos de los fármacos , Daño del ADN , Monitoreo del Ambiente , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Citometría de Flujo , Humanos , Hibridación Fluorescente in Situ , Microscopía de Fuerza Atómica , Mitosis/efectos de los fármacos , Espectrometría por Rayos X , Espectrometría Raman , Huso Acromático/efectos de los fármacos , Células Madre
4.
Toxicol Appl Pharmacol ; 258(1): 51-60, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22037315

RESUMEN

Mechanisms of digitoxin-inhibited cell growth and induced apoptosis in human non-small cell lung cancer (NCI-H460) cells remain unclear. Understanding how digitoxin or derivate analogs induce their cytotoxic effect below therapeutically relevant concentrations will help in designing and developing novel, safer and more effective anti-cancer drugs. In this study, NCI-H460 cells were treated with digitoxin and a synthetic analog D6-MA to determine their anti-cancer activity. Different concentrations of digitoxin and D6-MA were used and the subsequent changes in cell morphology, viability, cell cycle, and protein expressions were determined. Digitoxin and D6-MA induced dose-dependent apoptotic morphologic changes in NCI-H460 cells via caspase-9 cleavage, with D6-MA possessing 5-fold greater potency than digitoxin. In comparison, non-tumorigenic immortalized bronchial and small airway epithelial cells displayed significantly less apoptotic sensitivity compared to NCI-H460 cells suggesting that both digitoxin and D6-MA were selective for NSCLC. Furthermore, NCI-H460 cells arrested in G(2)/M phase following digitoxin and D6-MA treatment. Post-treatment evaluation of key G2/M checkpoint regulatory proteins identified down-regulation of cyclin B1/cdc2 complex and survivin. Additionally, Chk1/2 and p53 related proteins experienced down-regulation suggesting a p53-independent cell cycle arrest mechanism. In summary, digitoxin and D6-MA exert anti-cancer effects on NCI-H460 cells through apoptosis or cell cycle arrest, with D6-MA showing at least 5-fold greater potency relative to digitoxin.


Asunto(s)
Antineoplásicos/farmacología , Digitoxina/análogos & derivados , Digitoxina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Ramnosa/análogos & derivados , Caspasa 9/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Ciclina B1/análisis , Citocromos c/análisis , Humanos , Neoplasias Pulmonares/patología , Proteínas Quinasas/análisis , Ramnosa/farmacología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores
5.
J Toxicol Environ Health A ; 72(23): 1509-19, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20077225

RESUMEN

Crystalline silica (silica), a suspected human carcinogen, produces an increase in reactive oxygen species (ROS) when fractured using mechanical tools used in several occupations. Although ROS has been linked to apoptosis, DNA damage, and carcinogenesis, the role of enhanced ROS production by silica in silica-induced carcinogenesis is not completely understood. The goal of this study was to compare freshly fractured and aged silica-induced molecular alterations in human immortalized/transformed bronchial epithelial cells (BEAS-IIB) and lung cancer cells with altered (H460) or deficient (H1299) p53 expression. Exposure to freshly fractured or aged silica produced divergent cellular responses in certain downstream cellular events, including ROS production, apoptosis, cell cycle and chromosomal changes, and gene expression. ROS production increased significantly following exposure to freshly fractured silica compared to aged silica in BEAS-IIB and H460 cells. Apoptosis showed a comparable enhanced level of induction with freshly fractured or aged silica in both cancer lines with p53 functional changes. p53 protein was present in the BEAS-IIB and was absent in cancer cell lines after silica exposure. Exposure to freshly fractured silica also resulted in a rise in aneuploidy in cancer cells with a significantly greater increase in p53-deficient cells. Cytogenetic analysis demonstrated increased metaphase spreads, chromosome breakage, rearrangements, and endoreduplication in both cancer cells. These results suggest that altered and deficient p53 affects the cellular response to freshly fractured silica exposure, and thereby enhances susceptibility and augments cell proliferation and lung cancer development.


Asunto(s)
Dióxido de Silicio/toxicidad , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Pruebas de Carcinogenicidad , Línea Celular , Análisis Citogenético , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética
6.
Toxicol Appl Pharmacol ; 233(1): 81-91, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18367224

RESUMEN

The incidence of adenocarcinoma of the lung is increasing in the United States, however, the difficulties in obtaining lung cancer families and representative samples of early to late stages of the disease have lead to the study of mouse models for lung cancer. We used Spectral Karyotyping (SKY), mapping with fluorescently labeled genomic clones (FISH), comparative genomic hybridization (CGH) arrays, gene expression arrays, Western immunoblot and real time polymerase chain reaction (PCR) to analyze nine pairs of high-invasive and low-invasive tumor cell strains derived from early passage mouse lung adenocarcinoma cells to detect molecular changes associated with tumor invasion. The duplication of chromosomes 1 and 15 and deletion of chromosome 8 were significantly associated with a high-invasive phenotype. The duplication of chromosome 1 at band C4 and E1/2-H1 were the most significant chromosomal changes in the high-invasive cell strains. Mapping with FISH and CGH array further narrowed the minimum region of duplication of chromosome 1 to 71-82 centimorgans (cM). Expression array analysis and confirmation by real time PCR demonstrated increased expression of COX-2, Translin (TB-RBP), DYRK3, NUCKS and Tubulin-alpha4 genes in the high-invasive cell strains. Elevated expression and copy number of these genes, which are involved in inflammation, cell movement, proliferation, inhibition of apoptosis and telomere elongation, were associated with an invasive phenotype. Similar linkage groups are altered in invasive human lung adenocarcinoma, implying that the mouse is a valid genetic model for the study of the progression of human lung adenocarcinoma.


Asunto(s)
Adenocarcinoma/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Aberraciones Cromosómicas , Neoplasias Pulmonares/genética , Adenocarcinoma/patología , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular/fisiología , Cariotipificación/métodos , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Invasividad Neoplásica , Especificidad de la Especie , Células Tumorales Cultivadas
7.
ACS Nano ; 11(9): 8849-8863, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28759202

RESUMEN

Pulmonary toxicity studies on carbon nanotubes focus primarily on as-produced materials and rarely are guided by a life cycle perspective or integration with exposure assessment. Understanding toxicity beyond the as-produced, or pure native material, is critical, due to modifications needed to overcome barriers to commercialization of applications. In the first series of studies, the toxicity of as-produced carbon nanotubes and their polymer-coated counterparts was evaluated in reference to exposure assessment, material characterization, and stability of the polymer coating in biological fluids. The second series of studies examined the toxicity of aerosols generated from sanding polymer-coated carbon-nanotube-embedded or neat composites. Postproduction modification by polymer coating did not enhance pulmonary injury, inflammation, and pathology or in vitro genotoxicity of as-produced carbon nanotubes, and for a particular coating, toxicity was significantly attenuated. The aerosols generated from sanding composites embedded with polymer-coated carbon nanotubes contained no evidence of free nanotubes. The percent weight incorporation of polymer-coated carbon nanotubes, 0.15% or 3% by mass, and composite matrix utilized altered the particle size distribution and, in certain circumstances, influenced acute in vivo toxicity. Our study provides perspective that, while the number of workers and consumers increases along the life cycle, toxicity and/or potential for exposure to the as-produced material may greatly diminish.


Asunto(s)
Nanotubos de Carbono/toxicidad , Exposición Profesional/efectos adversos , Aerosoles/química , Aerosoles/toxicidad , Animales , Humanos , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Mutágenos/química , Mutágenos/toxicidad , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Polímeros/química , Polímeros/toxicidad
8.
Cancer Biol Ther ; 5(4): 407-12, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16481740

RESUMEN

Translocations and unique chromosome break points in melanoma will aid in the identification of the genes that are important in the neoplastic process. We have previously shown a unique translocation in malignant melanoma cells der(12)t(12;20). The transcription factor E2F1 maps to 20q11. Increased expression of E2F has been associated with the autonomous growth of melanoma cells, however, the molecular basis has not yet been elucidated. To this end, we investigated E2F1 gene copy number and structure in human melanoma cell lines and metastatic melanoma cases. Fluorescent in situ hybridization (FISH) analysis using a specific E2F1 probe indicated increased E2F1 gene copies in melanoma cell lines compared to normal melanocytes. We also observed increased copies of the E2F1 gene in lymph node metastases of melanoma. In addition, Western blot analysis demonstrated increased E2F1 protein levels in 8 out of 9 melanoma cell lines relative to normal melanocytes. Inhibition of E2F1 expression with RNAi also reduced melanoma cell growth. Our results suggest that the release of E2F activity by elevated E2F1 gene copy numbers may play a functional role in melanoma growth.


Asunto(s)
Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Predisposición Genética a la Enfermedad , Melanoma/genética , Melanoma/patología , Western Blotting , Línea Celular Tumoral , Cromosomas Humanos Par 12 , Humanos , Hibridación Fluorescente in Situ , Metástasis Linfática , Melanocitos/metabolismo , Melanoma/metabolismo , Interferencia de ARN , Translocación Genética
9.
Cancer Res ; 62(4): 1152-7, 2002 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-11861397

RESUMEN

Although adenocarcinoma is rapidly becoming the most common form of lung cancer in the United States, the difficulty in obtaining lung cancer families and representative samples of the various stages of adenocarcinoma progression has led to intense study of mouse models. As a powerful approach to delineating molecular changes, we have analyzed 15 early-passage mouse cell lines by spectral karyotyping. Entire copies of chromosomes 1, 2, 6, 12, 15, and 19 were gained, and entire copies of chromosomes 4, 7, 8, and 14 were lost. Significant gains of portions of chromosome 1 (93% of the tumor cell lines analyzed), chromosome 2 (53%), chromosome 6 (73%), chromosome 7 (80%), chromosome 12 (47%), and chromosome 15 (73%) and partial loss of chromosome 4 (87%), chromosome 7 (80%), chromosome 8 (53%), chromosome 10 (33%), and chromosome 14 (33%) were observed. Recurrent translocations included 10:del(10)(A1::C1), t(4;8)(C4;A1), and der (1;12)(C2;C2). The minimal regions of chromosomal alteration, 1G1, 2F1, 4C4, 6D, 7F1, 8B3, and 12C2, contain putative susceptibility genes for mouse lung adenocarcinoma. Chromosomal regions containing susceptibility genes linked to tumor size were frequently amplified, whereas regions with susceptibility loci linked to tumor multiplicity were deleted. Similar linkage groups are altered in human lung adenocarcinoma, implying that the mouse is a valid genetic model for the study of human lung adenocarcinoma susceptibility.


Asunto(s)
Adenocarcinoma/genética , Aberraciones Cromosómicas , Neoplasias Pulmonares/genética , Animales , Amplificación de Genes , Eliminación de Gen , Ligamiento Genético , Humanos , Cariotipificación , Ratones , Especificidad de la Especie , Translocación Genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA