Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
BMC Genomics ; 25(1): 759, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097683

RESUMEN

BACKGROUND: Chrysanthemum morifolium 'HangBaiJu', a popular medicinal and edible plant, exerts its biological activities primarily through the presence of flavones and caffeoylquinic acids (CQAs). However, the regulatory mechanism of flavone and CQA biosynthesis in the chrysanthemum capitulum remains unclear. RESULTS: In this study, the content of flavones and CQAs during the development of chrysanthemum capitulum was determined by HPLC, revealing an accumulation pattern with higher levels at S1 and S2 and a gradual decrease at S3 to S5. Transcriptomic analysis revealed that CmPAL1/2, CmCHS1/2, CmFNS, CmHQT, and CmHCT were key structural genes in flavones and CQAs biosynthesis. Furthermore, weighted gene co-expression correlation network analysis (WGCNA), k-means clustering, correlation analysis and protein interaction prediction were carried out in this study to identify transcription factors (TFs) associated with flavone and CQA biosynthesis, including MYB, bHLH, AP2/ERF, and MADS-box families. The TFs CmERF/PTI6 and CmCMD77 were proposed to act as upstream regulators of CmMYB3 and CmbHLH143, while CmMYB3 and CmbHLH143 might form a complex to directly regulate the structural genes CmPAL1/2, CmCHS1/2, CmFNS, CmHQT, and CmHCT, thereby controlling flavone and CQA biosynthesis. CONCLUSIONS: Overall, these findings provide initial insights into the TF regulatory network underlying flavones and CQAs accumulation in the chrysanthemum capitulum, which laid a theoretical foundation for the quality improvement of C. morifolium 'HangBaiJu' and the high-quality development of the industry.


Asunto(s)
Chrysanthemum , Flavonas , Ácido Quínico , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flavonas/metabolismo , Ácido Quínico/metabolismo , Ácido Quínico/análogos & derivados , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolómica , Transcriptoma
2.
Physiol Plant ; 176(5): e14501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39256953

RESUMEN

Cold stress seriously affects plant development and secondary metabolism. The basic region/leucine zipper (bZIP) is one of the largest transcription factor (TFs) family and widely involved in plant cold stress response. However, the function of bZIP in Dendrobium catenatum has not been well-documented. Cold inhibited the growth of D. catenatum and increased total polysaccharide and alkaloid contents in stems. Here, 62 DcbZIP genes were identified in D. catenatum, which were divided into 13 subfamilies. Among them, 58 DcbZIPs responded to cold stress, which were selected based on the transcriptome database produced from cold-treated D. catenatum seedlings. Specifically, the expression of DcbZIP3/6/28 was highly induced by cold treatment in leaves or stems. Gene sequence analysis indicated that DcbZIP3/6/28 contains the bZIP conserved domain and is localized to the cell nucleus. Co-expression networks showed that DcbZIP6 was significantly negatively correlated with PAL2 (palmitoyl-CoA), which is involved in flavonoid metabolism. Moreover, DcbZIP28 has significant negative correlations with various metabolism-related genes in the polysaccharide metabolic pathway, including PFKA1 (6-phosphofructokinase), ALDO2 (aldose-6-phosphate reductase) and SCRK5 (fructokinase). These results implied that DcbZIP6 or DcbZIP28 are mainly involved in flavonoid or polysaccharide metabolism. Overall, these findings provide new insights into the roles of the DcbZIP gene family in secondary metabolism in D. catenatum under cold stress.


Asunto(s)
Respuesta al Choque por Frío , Dendrobium , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Metabolismo Secundario , Dendrobium/genética , Dendrobium/metabolismo , Dendrobium/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología , Metabolismo Secundario/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Frío , Filogenia
3.
Cell Mol Life Sci ; 79(8): 399, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35792959

RESUMEN

Hematopoietic stem/progenitor cells (HSPCs) originate from endothelial cells (ECs) localized on the ventral side of the dorsal aorta (DA), and hemodynamic parameters may suffer sharp changes in DA at HSPCs development stage for intersegmental vessel formation. However, the temporal-spatial shear stress parameters and biomechanics mechanisms of HSPC budding remain unknown. Here, we found that the hematopoietic endothelium (HE) in the aorta-gonad-mesonephros was heterogeneous; that is, HEs were mainly distributed at the ventral side of the vascular bifurcation in zebrafish embryos, which was found to show low shear stress (LSS) through numerical simulation analysis. Furthermore, HSPCs localized in the posterior somite of aorta-gonad-mesonephros with slow velocity. On the temporal scale, there was a slow velocity and LSS during HE budding from 36 h post-fertilization and decreased shear stress with drug expanded HSPC numbers. Mechanistically, matrix metalloproteinase (MMP) expression and macrophage chemotaxis were significantly increased in HEs by RNA-seq. After treatment with an MMP13 inhibitor, HSPCs were significantly reduced in both the aorta-gonad-mesonephros and caudal hematopoietic tissue in embryos. Our results show that HSPC budding is heterogeneous, and the mechanism is that physiological LSS controls the emergence of HSPCs by promoting the accumulation of macrophages and subsequent MMP expression.


Asunto(s)
Células Endoteliales , Pez Cebra , Animales , Células Endoteliales/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Phys Rev Lett ; 128(17): 172002, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35570428

RESUMEN

We develop a method for lattice QCD calculation of the two-photon exchange contribution to the muonic-hydrogen Lamb shift. To demonstrate its feasibility, we present the first lattice calculation with a gauge ensemble at m_{π}=142 MeV. By adopting the infinite-volume reconstruction method along with an optimized subtraction scheme, we obtain with statistical uncertainty ΔE_{TPE}=-28.9(4.9) µeV+93.72 µeV/fm^{2}·⟨r_{p}^{2}⟩, or ΔE_{TPE}=37.4(4.9) µeV, which is consistent with the previous theoretical results in a range of 20-50 µeV.

5.
BMC Cardiovasc Disord ; 22(1): 284, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35733117

RESUMEN

BACKGROUND: PCSK9 gene expression is associated with biological processes such as lipid metabolism, glucose metabolism, and inflammation. In the present study, our primary objective was to assess the association between the single-nucleotide polymorphisms in the PCSK9 gene and type 2 diabetes in Uygur subjects, in Xinjiang, China. METHODS: We designed a case-control study including 662 patients diagnosed with T2DM and 1220 control subjects. Four single-nucleotide polymorphisms (rs11583680, rs2483205, rs2495477 and rs562556) of PCSK9 gene were genotyped using the improved multiplex ligation detection reaction technique. RESULTS: For rs2483205, the distribution of genotypes, dominant model (CC vs CT + TT), overdominant model (CC + TT vs CT) showed significant differences between T2DM patients and the controls (P = 0.011 and P = 0.041 respectively). For rs2495477, the distribution of genotypes, the dominant model (AA vs GA + GG) showed significant differences between T2DM patients and the controls (P = 0.024). Logistic regression analysis suggested after adjustment of other confounders, the differences remained significant between the two groups [for rs2483205 CC vs CT + TT: odds ratio (OR) = 1.321, 95% confidence interval (CI) 1.078-1.617, P = 0.007; CC + TT vs CT: OR = 1.255, 95% CI 1.021-1.542, P = 0.03; for rs2495477 AA vs GA + GG: OR = 1.297, 95% CI 1.060-1.588, P = 0.012]. CONCLUSION: The present study indicated that CT + TT genotype and CT genotype of rs2483205, as well as GA + GG genotype of rs2495477 in PCSK9 gene were associated with an increased risk of type 2 diabetes in the Uygur population in Xinjiang.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proproteína Convertasa 9 , Humanos , Estudios de Casos y Controles , China/epidemiología , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/etnología , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Genotipo , Polimorfismo de Nucleótido Simple , Proproteína Convertasa 9/genética
6.
BMC Genomics ; 21(1): 728, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33081692

RESUMEN

BACKGROUND: The ray floret shapes referred to as petal types on the chrysanthemum (Chrysanthemum × morifolium Ramat.) capitulum is extremely abundant, which is one of the most important ornamental traits of chrysanthemum. However, the regulatory mechanisms of different ray floret shapes are still unknown. C. vestitum is a major origin species of cultivated chrysanthemum and has flat, spoon, and tubular type of ray florets which are the three basic petal types of chrysanthemum. Therefore, it is an ideal model material for studying ray floret morphogenesis in chrysanthemum. Here, using morphological, gene expression and transcriptomic analyses of different ray floret types of C. vestitum, we explored the developmental processes and underlying regulatory networks of ray florets. RESULTS: The formation of the flat type was due to stagnation of its dorsal petal primordium, while the petal primordium of the tubular type had an intact ring shape. Morphological differences between the two ray floret types occurred during the initial stage with vigorous cell division. Analysis of genes related to flower development showed that CYCLOIDEA genes, including CYC2b, CYC2d, CYC2e, and CYC2f, were differentially expressed in different ray floret types, while the transcriptional levels of others, such as MADS-box genes, were not significantly different. Hormone-related genes, including SMALL AUXIN UPREGULATED RNA (SAUR), GRETCHEN HAGEN3 (GH3), GIBBERELLIN 2-BETA-DIOXYGENASE 1 (GA2OX1) and APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF), were identified from 1532 differentially expressed genes (DEGs) in pairwise comparisons among the flat, spoon, and tubular types, with significantly higher expression in the tubular type than that in the flat type and potential involvement in the morphogenesis of different ray floret types. CONCLUSIONS: Our findings, together with the gene interactional relationships reported for Arabidopsis thaliana, suggest that hormone-related genes are highly expressed in the tubular type, promoting petal cell division and leading to the formation of a complete ring of the petal primordium. These results provide novel insights into the morphological variation of ray floret of chrysanthemum.


Asunto(s)
Chrysanthemum , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Morfogénesis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
7.
Mol Cancer ; 19(1): 28, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039732

RESUMEN

BACKGROUND: Accumulating evidence shows that long noncoding RNAs (lncRNAs) are important regulator molecules involved in diverse biological processes. Acquired drug resistance is a major challenge in the clinical treatment of glioblastoma (GBM), and lncRNAs have been shown to play a role in chemotherapy resistance. However, the underlying mechanisms by which lncRNA mediates TMZ resistance in GBM remain poorly characterized. METHODS: Quantitative reverse transcription PCR (qRT-PCR) and fluorescence in situ hybridization assays were used to detect small nucleolar RNA host gene 12 (SNHG12) levels in TMZ-sensitive and TMZ-resistant GBM cells and tissues. The effects of SNHG12 on TMZ resistance were investigated through in vitro assays (western blots, colony formation assays, flow cytometry assays, and TUNEL assays). The mechanism mediating the high expression of SNHG12 in TMZ-resistant cells and its relationships with miR-129-5p, mitogen-activated protein kinase 1 (MAPK1), and E2F transcription factor 7 (E2F7) were determined by bioinformatic analysis, bisulfite amplicon sequencing, methylation-specific PCR, dual luciferase reporter assays, chromatin immunoprecipitation assays, RNA immunoprecipitation assays, immunofluorescence, qRT-PCR, and western blot. For in vivo experiments, an intracranial xenograft tumor mouse model was used to investigate SNHG12 function. RESULTS: SNHG12 was upregulated in TMZ-resistant cells and tissues. Overexpression of SNHG12 led to the development of acquired TMZ resistance, while knockdown of SNHG12 restored TMZ sensitivity. An abnormally low level of DNA methylation was detected within the promoter region of SNHG12, and loss of DNA methylation made this region more accessible to the Sp1 transcription factor (SP1); this indicated that methylation and SP1 work together to regulate SNHG12 expression. In the cytoplasm, SNHG12 served as a sponge for miR-129-5p, leading to upregulation of MAPK1 and E2F7 and endowing the GBM cells with TMZ resistance. Disinhibition of MAPK1 regulated TMZ-induced cell apoptosis and the G1/S cell cycle transition by activating the MAPK/ERK pathway, while E2F7 dysregulation was primarily associated with G1/S cell cycle transition. Clinically, SNHG12 overexpression was associated with poor survival of GBM patients undergoing TMZ treatment. CONCLUSION: Our results suggest that SNHG12 could serve as a promising therapeutic target to surmount TMZ resistance, thereby improving the clinical efficacy of TMZ chemotherapy.


Asunto(s)
Metilación de ADN , Resistencia a Antineoplásicos , Factor de Transcripción E2F7/metabolismo , Glioblastoma/patología , MicroARNs/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , ARN Largo no Codificante/genética , Temozolomida/farmacología , Animales , Antineoplásicos Alquilantes/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Factor de Transcripción E2F7/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cancer Cell Int ; 20: 69, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32158359

RESUMEN

BACKGROUND: Glucose metabolic reprogramming is a significant hallmark of malignant tumors including GBM. Previous studies suggest that microRNAs play key roles in modulating this process in GBM cells. miR-181b acts as a tumor suppressor miRNA in influencing glioma tumorigenesis. Our previous results showed that miR-181b was down-regulated in glioma cells and tissues. METHODS: The extracellular acidification rate (ECAR), colony formation assay and levels of Glut1 and PKM2 were measured to assess the glucose metabolic and proliferation changes in GBM cells overexpressing miR-181b. Immunoblotting and luciferase reporter assay were performed to confirm the expression and role of SP1 as a direct target of miR-181b. ChIP assay was used to figure out the transcriptional regulation of SP1 on Glut1 and PKM2. In vivo study was examined for the role of miR-181b in GBM cells. RESULTS: MiR-181b overexpression significantly reduced the glucose metabolic and colony formation ability of GBM cells. And, SP1 was confirmed as a direct target of miR-181b while upregulation of SP1 could reverse the influence of overexpression of miR-181b. Furthermore, Glut1 and PKM2 could be regulated by SP1. Finally, miR-181b could inhibit the tumor growth in vivo. CONCLUSIONS: Our article demonstrated the inhibitory effect of miR-181b on glucose metabolism and proliferation in GBM by suppressing SP1 expression.

9.
J Ethnopharmacol ; 330: 118198, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621465

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In recent years, Chinese herbal medicine has gained more and more recognition in disease prevention and control due to its low toxicity and comprehensive treatment. C. morifolium (Chrysanthemum morifolium Ramat.), as the medicine food homology plant with the bioactivity of anti-oxidation, anti-inflammatory, neuroprotection and cardiovascular protection, has important therapeutic effects and health benefits for colds, inflammation, cardiovascular diseases and various chronic diseases. AIM OF THE STUDY: By reviewing the historical development, classification and distribution of germplasm resources, phytochemistry, pharmacology, and modern application of C. morifolium, the paper provides a reliable basis for the further research and application of chrysanthemum as therapeutic agents and functional additives. MATERIALS AND METHODS: The literature and information about C. morifolium published in the last ten years were collected from various platforms, including Google Scholar, PubMed, ScienceDirect, Web of Science and China Knowledge Network. RESULTS: A comprehensive analysis confirmed that C. morifolium originated in China, and it went through the development process from food and tea to medicine for more than 3000 years. During this period, different cultivars emerged through several breeding techniques and were distributed throughout the world. Moreover, A variety of chemical components such as flavonoids, phenolic acids, volatile oils, and terpenes in chrysanthemum have been proven they possess various pharmacology of anti-inflammatory, anti-oxidant, and prevention of chronic diseases by regulating inflammatory cytokines, oxidative stress responses and signaling pathways, which are the essential conditions to play a role in TCM, nutraceuticals and diet. CONCLUSION: This paper provides a comprehensive review of historical development, classification, phytochemistry, pharmacology, and modern application of C. morifolium. However, future studies should continue to focus on the bioactive compounds and the synergistic mechanism of the "multi-component, multi-target, and multi-pathway" of chrysanthemum, and it is necessary to develop more innovative products with therapeutic effects.


Asunto(s)
Chrysanthemum , Medicina Tradicional China , Animales , Humanos , Chrysanthemum/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Etnofarmacología , Medicina Tradicional China/métodos , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoterapia
10.
EClinicalMedicine ; 70: 102513, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38449838

RESUMEN

Background: Adjunctive newer antiseizure medications (ASMs) are being used in patients with treatment-resistant focal-onset seizures (FOS). An updated network meta-analysis (NMA) was necessary to compile evidence in this critical area. Methods: We systematically searched PubMed, Embase, Cochrane Library, Web of Science, and Scopus from their inception until 17 January 2024, evaluating the efficacy, tolerability, and safety of rufinamide (RUF), brivaracetam (BRV), cenobamate (CNB), eslicarbazepine (ESL), lacosamide (LCM), retigabine (RTG), and perampanel (PER) as adjunctive treatments for FOS. Efficacy outcomes included seizure response and seizure freedom. Tolerability was assessed by discontinuation due to adverse events (AEs). Safety outcomes were evaluated based on the number of patients experiencing at least one AE and serious adverse events (SAEs). This review is registered with PROSPERO (CRD42023485130). Findings: A total of 29 studies involving 11,750 participants were included. For seizure response, all ASMs were significantly superior to placebo, with RTG ranking highest, followed by CNB. Considering dosage, CNB 400 mg/d was top-ranked, followed by RTG 1200 mg/d. For seizure freedom, BRV was highest-ranked, followed by CNB, with BRV 100 mg/d leading, followed by CNB 400 mg/d. Regarding tolerability, LCM 600 mg/d had the lowest ranking, followed by CNB 400 mg/d. For the safety outcome of AEs, ESL 1200 mg/d was ranked lowest, followed by CNB 400 mg/d. Regarding SAEs, LCM 400 mg/d was ranked lowest, followed by RTG 1200 mg/d. Interpretation: ASMs at different dosages have varying efficacy and tolerability profiles. We have provided hierarchical rankings of ASMs for efficacy and safety outcomes. Our findings offer the most comprehensive evidence available to inform patients, families, physicians, guideline developers, and policymakers about the choice of ASMs in patients with treatment-resistant FOS. Funding: None.

11.
Int J Biol Macromol ; 258(Pt 1): 128880, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141713

RESUMEN

TGA transcription factors (TFs), belonging to the D clade of the basic region leucine zipper (bZIP) family, exhibit a specific ability to recognize and bind to regulatory elements with TGACG as the core recognition sequence, enabling the regulation of target gene expression and participation in various biological regulatory processes. In plant growth and development, TGA TFs influence organ traits and phenotypes, including initial root length and flowering time. They also play a vital role in responding to abiotic stresses like salt, drought, and cadmium exposure. Additionally, TGA TFs are involved in defending against potential biological stresses, such as fungal bacterial diseases and nematodes. Notably, TGA TFs are sensitive to the oxidative-reductive state within plants and participate in pathways that aid in the elimination of reactive oxygen species (ROS) generated during stressful conditions. TGA TFs also participate in multiple phytohormonal signaling pathways (ABA, SA, etc.). This review thoroughly examines the roles of TGA TFs in plant growth, development, and stress response. It also provides detailed insights into the mechanisms underlying their involvement in physiological and pathological processes, and their participation in plant hormone signaling. This multifaceted exploration distinguishes this review from others, offering a comprehensive understanding of TGA TFs.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Plantas/genética , Reguladores del Crecimiento de las Plantas , Plantas/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
12.
Cancer Cell ; 42(6): 968-984.e9, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38788719

RESUMEN

Glioblastomas (GBM) are incurable central nervous system (CNS) cancers characterized by substantial myeloid cell infiltration. Whether myeloid cell-directed therapeutic targets identified in peripheral non-CNS cancers are applicable to GBM requires further study. Here, we identify that the critical immunosuppressive target in peripheral cancers, triggering receptor expressed on myeloid cells-2 (TREM2), is immunoprotective in GBM. Genetic or pharmacological TREM2 deficiency promotes GBM progression in vivo. Single-cell and spatial sequencing reveals downregulated TREM2 in GBM-infiltrated myeloid cells. TREM2 negatively correlates with immunosuppressive myeloid and T cell exhaustion signatures in GBM. We further demonstrate that during GBM progression, CNS-enriched sphingolipids bind TREM2 on myeloid cells and elicit antitumor responses. Clinically, high TREM2 expression in myeloid cells correlates with better survival in GBM. Adeno-associated virus-mediated TREM2 overexpression impedes GBM progression and synergizes with anti-PD-1 therapy. Our results reveal distinct functions of TREM2 in CNS cancers and support organ-specific myeloid cell remodeling in cancer immunotherapy.


Asunto(s)
Glioblastoma , Glicoproteínas de Membrana , Receptores Inmunológicos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Humanos , Animales , Ratones , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Células Mieloides/metabolismo , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Línea Celular Tumoral , Ratones Endogámicos C57BL , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo
13.
Sci Transl Med ; 16(767): eadk9524, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356747

RESUMEN

MYC promotes tumor growth through multiple mechanisms. Here, we show that, in human glioblastomas, the variant MYC transcript encodes a 114-amino acid peptide, MYC pre-mRNA encoded protein (MPEP), from the upstream open reading frame (uORF) MPEP. Secreted MPEP promotes patient-derived xenograft tumor growth in vivo, independent of MYC through direct binding, and activation of tropomyosin receptor kinase B (TRKB), which induces downstream AKT-mTOR signaling. Targeting MPEP through genetic ablation reduced growth of patient-derived 4121 and 3691 glioblastoma stem cells. Administration of an MPEP-neutralizing antibody in combination with a small-molecule TRKB inhibitor reduced glioblastoma growth in patient-derived xenograft tumor-bearing mice. The overexpression of MPEP in surgical glioblastoma specimens predicted a poor prognosis, supporting its clinical relevance. In summary, our results demonstrate that tumor-specific translation of a MYC-associated uORF promotes glioblastoma growth, suggesting a new therapeutic strategy for glioblastoma.


Asunto(s)
Glioblastoma , Sistemas de Lectura Abierta , Proteínas Proto-Oncogénicas c-myc , Receptor trkB , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Animales , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sistemas de Lectura Abierta/genética , Ratones , Línea Celular Tumoral , Receptor trkB/metabolismo , Proliferación Celular/efectos de los fármacos , Unión Proteica , Transducción de Señal , Péptidos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación Neoplásica de la Expresión Génica
14.
Cell Death Differ ; 31(6): 738-752, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594444

RESUMEN

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.


Asunto(s)
Glioblastoma , FN-kappa B , Células Madre Neoplásicas , Transducción de Señal , Macrófagos Asociados a Tumores , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Humanos , Animales , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , FN-kappa B/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Microambiente Tumoral
15.
J Ethnopharmacol ; 306: 116166, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649850

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bamboos are perennial evergreen plants that belong to the subfamily Bambusoideae of the true grass family Poaceae, with more than thousands of species distributed around the world. They are used as a traditional medicine with demonstrated effects of anti-oxidation, free radical scavenging, anti-inflammatory, liver protection and ameliorating cognitive deficits. Bamboo leaf is mainly used for the treatment of atherosclerotic, diabetic and nervous system diseases. AIM OF THE STUDY: This review aims to provide up-to-date information on the traditional medicinal properties, phytochemistry, pharmacology, and purification technologies of bamboo leaf. MATERIALS AND METHODS: Relevant information on bamboo leaf was obtained by an online search of worldwide accepted scientific databases (Web of Science, ScienceDirect, Elsevier, SpringerLink, ACS Publications, Wiley Online Library and CNKI). RESULTS: More than 100 chemical compounds, including flavonoids and flavonoid glycosides, volatile components, phenolic acids, polysaccharide, coenzyme Q10, phenylpropanoid and amino acids have been reported to be present. These compounds were usually extracted by column chromatography and membrane separation technologies. Preparative high performance liquid chromatography (PHPLC), high-speed counter-current chromatography (HSCCC), simulated moving bed chromatography (SMB) and dynamic axial compression chromatography (DAC) were the advanced separation technologies have been used to isolate C-glycosides from bamboo leaf flavonoid, the main bioactive ingredient of bamboo leaf. Currently, bamboo leaf is mainly used for the treatment of atherosclerotic, diabetic, hepatic diseases and nervous system related symptoms, which are attributed to the presence of bioactive components of bamboo leaf. CONCLUSIONS: Phytochemical and pharmacological analyses of bamboo leaf have been revealed in recent studies. However, most of the pharmacological studies on bamboo leaf have focused on bamboo leaf flavonoids. Further studies need to pay more attention to other phytochemical components of bamboo leaf. In addition, there is lack of sufficient clinical data and toxicity studies on bamboo leaf. Therefore, more clinical and toxicity researches on this plant and constituents are recommended.


Asunto(s)
Medicina Tradicional , Fitoterapia , Etnofarmacología/métodos , Medicina Tradicional/métodos , Hojas de la Planta , Tecnología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología
16.
Cancer Lett ; 573: 216380, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37660885

RESUMEN

Preoperative MRI is an essential diagnostic and therapeutic reference for gliomas. This study aims to evaluate the prognostic aspect of a radiomics biomarker for glioma and further investigate its relationship with tumor microenvironment and macrophage infiltration. We covered preoperative MRI of 664 glioma patients from three independent datasets: Jiangsu Province Hospital (JSPH, n = 338), The Cancer Genome Atlas dataset (TCGA, n = 252), and Repository of Molecular Brain Neoplasia Data (REMBRANDT, n = 74). Incorporating a multistep post-processing workflow, 20 radiomics features (Rads) were selected and a radiomics survival biomarker (RadSurv) was developed, proving highly efficient in risk stratification of gliomas (cut-off = 1.06), as well as lower-grade gliomas (cut-off = 0.64) and glioblastomas (cut-off = 1.80) through three fixed cut-off values. Through immune infiltration analysis, we found a positive correlation between RadSurv and macrophage infiltration (RMΦ = 0.297, p < 0.001; RM2Φ = 0.241, p < 0.001), further confirmed by immunohistochemical-staining (glioblastomas, n = 32) and single-cell sequencing (multifocal glioblastomas, n = 2). In conclusion, RadSurv acts as a strong prognostic biomarker for gliomas, exhibiting a non-negligible positive correlation with macrophage infiltration, especially with M2 macrophage, which strongly suggests the promise of radiomics-based models as a preoperative alternative to conventional genomics for predicting tumor macrophage infiltration and provides clinical guidance for immunotherapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Genómica , Macrófagos , Microambiente Tumoral
17.
Cancer Res ; 83(7): 1094-1110, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36696363

RESUMEN

Radiotherapy is a major component of standard-of-care treatment for gliomas, the most prevalent type of brain tumor. However, resistance to radiotherapy remains a major concern. Identification of mechanisms governing radioresistance in gliomas could reveal improved therapeutic strategies for treating patients. Here, we report that mitochondrial metabolic pathways are suppressed in radioresistant gliomas through integrated analyses of transcriptomic data from glioma specimens and cell lines. Decreased expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α), the key regulator of mitochondrial biogenesis and metabolism, correlated with glioma recurrence and predicted poor prognosis and response to radiotherapy of patients with glioma. The subpopulation of glioma cells with low-mitochondrial-mass exhibited reduced expression of PGC1α and enhanced resistance to radiotherapy treatment. Mechanistically, PGC1α was phosphorylated at serine (S) 636 by DNA-dependent protein kinase in response to irradiation. Phosphorylation at S636 promoted the degradation of PGC1α by facilitating its binding to the E3 ligase RNF34. Restoring PGC1α activity with expression of PGC1α S636A, a phosphorylation-resistant mutant, or a small-molecule PGC1α activator ZLN005 increased radiosensitivity of resistant glioma cells by reactivating mitochondria-related reactive oxygen species production and inducing apoptotic effects both in vitro and in vivo. In summary, this study identified a self-protective mechanism in glioma cells in which radiotherapy-induced degradation of PGC1α and suppression of mitochondrial biogenesis play a central role. Targeted activation of PGC1α could help improve response to radiotherapy in patients with glioma. SIGNIFICANCE: Glioma cells reduce mitochondrial biogenesis by promoting PGC1α degradation to promote resistance to radiotherapy, indicating potential therapeutic strategies to enhance radiosensitivity.


Asunto(s)
Glioma , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Biogénesis de Organelos , Mitocondrias/metabolismo , Glioma/genética , Glioma/radioterapia , Glioma/metabolismo , Proteínas Portadoras/metabolismo
18.
Neuro Oncol ; 25(9): 1578-1591, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36934350

RESUMEN

BACKGROUND: Glioblastomas (GBMs) display striking dysregulation of metabolism to promote tumor growth. Glioblastoma stem cells (GSCs) adapt to regions of heterogeneous nutrient availability, yet display dependency on de novo cholesterol biosynthesis. The transcription factor Sterol Regulatory Element-Binding Protein 2 (SREBP2) regulates cholesterol biosynthesis enzymes and uptake receptors. Here, we investigate adaptive behavior of GSCs under different cholesterol supplies. METHODS: In silico analysis of patient tumors demonstrated enrichment of cholesterol synthesis associated with decreased angiogenesis. Comparative gene expression of cholesterol biosynthesis enzymes in paired GBM specimens and GSCs were performed. In vitro and in vivo loss-of-function genetic and pharmacologic assays were conducted to evaluate the effect of SREBP2 on GBM cholesterol biosynthesis, proliferation, and self-renewal. Chromatin immunoprecipitation quantitative real-time PCR was leveraged to map the regulation of SREBP2 to cholesterol biosynthesis enzymes and uptake receptors in GSCs. RESULTS: Cholesterol biosynthetic enzymes were expressed at higher levels in GBM tumor cores than in invasive margins. SREBP2 promoted cholesterol biosynthesis in GSCs, especially under starvation, as well as proliferation, self-renewal, and tumor growth. SREBP2 governed the balance between cholesterol biosynthesis and uptake in different nutrient conditions. CONCLUSIONS: SREBP2 displays context-specific regulation of cholesterol biology based on its availability in the microenvironment with induction of cholesterol biosynthesis in the tumor core and uptake in the margin, informing a novel treatment strategy for GBM.


Asunto(s)
Glioblastoma , Humanos , Línea Celular Tumoral , Colesterol/metabolismo , Regulación de la Expresión Génica , Glioblastoma/patología , Células Madre Neoplásicas/metabolismo , Células Madre/metabolismo , Células Madre/patología , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Microambiente Tumoral
19.
Clin Cancer Res ; 29(18): 3779-3792, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37439870

RESUMEN

PURPOSE: The dynamic interplay between glioblastoma stem cells (GSC) and tumor-associated macrophages (TAM) sculpts the tumor immune microenvironment (TIME) and promotes malignant progression of glioblastoma (GBM). However, the mechanisms underlying this interaction are still incompletely understood. Here, we investigate the role of CXCL8 in the maintenance of the mesenchymal state of GSC populations and reprogramming the TIME to an immunosuppressive state. EXPERIMENTAL DESIGN: We performed an integrative multi-omics analyses of RNA sequencing, GBM mRNA expression datasets, immune signatures, and epigenetic profiling to define the specific genes expressed in the mesenchymal GSC subsets. We then used patient-derived GSCs and a xenograft murine model to investigate the mechanisms of tumor-intrinsic and extrinsic factor to maintain the mesenchymal state of GSCs and induce TAM polarization. RESULTS: We identified that CXCL8 was preferentially expressed and secreted by mesenchymal GSCs and activated PI3K/AKT and NF-κB signaling to maintain GSC proliferation, survival, and self-renewal through a cell-intrinsic mechanism. CXCL8 induced signaling through a CXCR2-JAK2/STAT3 axis in TAMs, which supported an M2-like TAM phenotype through a paracrine, cell-extrinsic pathway. Genetic- and small molecule-based inhibition of these dual complementary signaling cascades in GSCs and TAMs suppressed GBM tumor growth and prolonged survival of orthotopic xenograft-bearing mice. CONCLUSIONS: CXCL8 plays critical roles in maintaining the mesenchymal state of GSCs and M2-like TAM polarization in GBM, highlighting an interplay between cell-autonomous and cell-extrinsic mechanisms. Targeting CXCL8 and its downstream effectors may effectively improve GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/patología , Macrófagos Asociados a Tumores/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo , Proliferación Celular , Microambiente Tumoral/genética
20.
Hortic Res ; 9: uhac071, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734379

RESUMEN

Cineraria (Senecio cruentus) is an ornamental plant with pure colour and bicolour cultivars, widely used for landscaping. Anthocyanin biosynthesis influences coloration patterns in cineraria. However, how anthocyanins accumulate and distribute in cineraria is poorly understood. This study investigated the molecular mechanisms underlying anthocyanin biosynthesis and bicolour formation in cineraria using pure colour and bicolour cultivars. Transcriptome and gene expression analysis showed that five genes, ScCHS2, ScF3H1, ScDFR3, ScANS, and ScbHLH17, were inhibited in the white cultivar and colourless regions of bicolour cultivars. In contrast, two MADS-box genes, ScAG and ScAGL11, showed significantly higher expression in the colourless regions of bicolour cultivars. ScAG and ScAGL11 were localized in the nucleus and co-expressed with the bicolour trait. Further functional analysis verified that ScAG inhibits anthocyanin accumulation in tobacco (Nicotiana tabacum). However, virus-induced gene silencing (VIGS) experiments showed that silencing of ScAG and ScAGL11 increases anthocyanin content in cineraria leaves. Similar results were observed when ScAG and ScAGL11 were silenced in the cineraria capitulum, accompanied by the smaller size of the colourless region, specifically in the ScAG/ScAGL11-silenced plants. The expression of ScCHS2, ScDFR3, and ScF3H1 increased in silenced cineraria leaves and capitulum. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that ScAG interacts with ScAGL11. Moreover, ScAG directly inhibited the transcription of ScF3H1 while ScAGL11 inhibited ScDFR3 expression by binding to their promoters separately. The findings reported herein indicate that ScAG and ScAGL11 negatively regulate anthocyanin biosynthesis in cineraria ray florets, and their differential expression in ray florets influences the bicolour pattern appearance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA