Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 19(3): e1011240, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36961850

RESUMEN

One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Células T Asesinas Naturales , Humanos , Animales , Ratones , Evasión Inmune , SARS-CoV-2
2.
Molecules ; 29(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675629

RESUMEN

In this study, we prepared high-nitrogen self-doped porous carbons (NPC1 and NPC2) derived from the pruned branches and seeds of Zanthoxylum bungeanum using a simple one-step method. NPC1 and NPC2 exhibited elevated nitrogen contents of 3.56% and 4.22%, respectively, along with rich porous structures, high specific surface areas of 1492.9 and 1712.7 m2 g-1 and abundant surface groups. Notably, both NPC1 and NPC2 demonstrated remarkable adsorption abilities for the pollutant methylene blue (MB), with maximum monolayer adsorption capacities of 568.18 and 581.40 mg g-1, respectively. The adsorption kinetics followed the pseudo-second-order kinetics and the adsorption isotherms conformed to the Langmuir isotherm model. The adsorption mechanism primarily relied on the hierarchical pore structures of NPC1 and NPC2 and their diverse strong interactions with MB molecules. This study offers a new approach for the cost-effective design of nitrogen self-doped porous carbons, facilitating the efficient removal of MB from wastewater.


Asunto(s)
Carbono , Azul de Metileno , Nitrógeno , Zanthoxylum , Zanthoxylum/química , Adsorción , Nitrógeno/química , Azul de Metileno/química , Porosidad , Carbono/química , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Aguas Residuales/química
3.
Microb Pathog ; 147: 104266, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32442664

RESUMEN

Bacteria cells can communicate with each other via quorum sensing (QS) system. Various physiological characteristics including virulence factors and biofilm formation are controlled by QS. So interrupting the bacterial communication is an alternative strategy instead of antibiotics for control bacterial infection. The aim of this study was to investigate the effects of tea polyphenols (TPs) on quorum sensing and virulence factors of Klebsiella pneumoniae. In vitro study showed that the anti-QS activity of tea polyphenols against Chromobacterium violaceum in violacein production. At sub-MICs, TPs inhibited the motility, reduced protease and exopolysaccharide (EPS) production and also biofilm formation in K. pneumoniae. In addition, in vivo study showed that tea polyphenols at 200 µg/mL and 400 µg/mL increased the survival rate of Caenorhabditis elegans to 73.3% and 82.2% against K. pneumonia infection. Our findings suggest that tea polyphenols can act as an effective QS inhibitor and can serve as a novel anti-virulence agent for the management of bacterial pathogens.


Asunto(s)
Neumonía , Percepción de Quorum , Animales , Antibacterianos/farmacología , Biopelículas , Caenorhabditis elegans , Chromobacterium , Klebsiella pneumoniae , Polifenoles/farmacología , Pseudomonas aeruginosa , , Virulencia
4.
Molecules ; 24(3)2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30696112

RESUMEN

In this work, ginger straw waste-derived porous carbons, with high adsorption capacity, high adsorption rate, and good reusability for removing the toxic dye of methylene blue from wastewater, were prepared by a facile method under oxygen-limiting conditions. This study opens a new approach for the utilization of ginger straw waste, and the porous materials can be employed as great potential adsorbents for treating dye wastewater.


Asunto(s)
Carbono/química , Azul de Metileno/química , Residuos , Zingiber officinale/química , Adsorción , Colorantes , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua , Purificación del Agua
6.
Food Chem X ; 21: 101089, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38259509

RESUMEN

In this 13-week study, the potential effects of oxidized konjac glucomannan (OKGM) on ICR mice's metabolic health and gut microbiota were investigated and contrasted with enzyme-hydrolyzed KGM (EKGM) at a same molecular weight. Mice were fed diets containing 0 %, 2.5 %, 5.0 %, and 7.5 % of OKGM for 13 weeks. Results indicated that OKGM induced no adverse effects, with overall health, body weight gain, food consumption, and clinical pathology parameters being comparable to the control group. The no-observed-adverse-effect-level for OKGM was determined at 7.5 % in the diet, corresponding to 10.21 and 12.01 g/kg/day for male and female mice, respectively. OKGM intake positively regulated gut microbiota, characterized by a reduction in the relative abundance of Firmicutes, an increase in Bacteroidetes, and an enhanced presence of Lactobacillus, particularly Lactobacillus reuteri. In comparison, EKGM differently modulated the microbiota, notably increasing Muribaculaceae. These findings suggest that OKGM has the potential to be a functional food additive.

7.
Nat Commun ; 14(1): 1936, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024459

RESUMEN

Serine proteases (SP), including furin, trypsin, and TMPRSS2 cleave the SARS-CoV-2 spike (S) protein, enabling the virus to enter cells. Here, we show that factor (F) Xa, an SP involved in blood coagulation, is upregulated in COVID-19 patients. In contrast to other SPs, FXa exerts antiviral activity. Mechanistically, FXa cleaves S protein, preventing its binding to ACE2, and thus blocking viral entry and infection. However, FXa is less effective against variants carrying the D614G mutation common in all pandemic variants. The anticoagulant rivaroxaban, a direct FXa inhibitor, inhibits FXa-mediated S protein cleavage and facilitates viral entry, whereas the indirect FXa inhibitor fondaparinux does not. In the lethal SARS-CoV-2 K18-hACE2 model, FXa prolongs survival yet its combination with rivaroxaban but not fondaparinux abrogates that protection. These results identify both a previously unknown function for FXa and an associated antiviral host defense mechanism against SARS-CoV-2 and suggest caution in considering direct FXa inhibitors for preventing or treating thrombotic complications in COVID-19 patients.


Asunto(s)
COVID-19 , Factor Xa , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Rivaroxabán/farmacología , Rivaroxabán/uso terapéutico , SARS-CoV-2/metabolismo , Internalización del Virus , Antivirales/farmacología
8.
Front Nutr ; 8: 750355, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692753

RESUMEN

Our previous research showed that capsaicin exhibits hypoglycemic effects by activating the transient receptor potential vanilloid 1 (TRPV1) channel in diabetic rats. Interestingly, capsiate was also able to activate the TRPV1 channel, but with a non-significant hypoglycemic effect. This study aimed to investigate the effect of capsaicin on the glycometabolism of streptozotocin (STZ)-induced diabetic rats by blocking the TRPV1 channel. After a 4-week capsaicin treatment (6 mg/kg·bw), the serum insulin level of STZ-induced diabetic rats increased from 15.2 to 22.1 mIU/L, the content of hepatic glycogen and muscle glycogen increased by 81.2 and 20.2%, respectively, and the blood glucose level decreased significantly from 19.3 to 14.7 mmol/L. When the TRPV1 channel was blocked, capsaicin lost the above-mentioned effects, and the hypoglycemic effect was no longer significant. It was concluded that a combined up-regulation of both TRPV1 receptors and pancreatic duodenal homeobox-1 (PDX-1) led to the hypoglycemic effect of capsaicin, which partially explains our previous observation: capsiate activating TRPV1 without showing a significant hypoglycemic effect was due to the lack of a significant up-regulation of PDX-1. Based on the experimental results, we speculated that two signaling pathways [TRPV1-(PDX1)-(GLUT2/GK) and TRPV1-(PDX-1)-(IRS1/2)] exist in the pancreas of STZ-induced diabetic rats.

9.
Food Funct ; 6(4): 1185-93, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25710810

RESUMEN

This study aims to examine the effect of the particle size of cellulose from sweet potato residues on lipid metabolism and cecal conditions in ovariectomized rats. Forty mature female Wistar rats were divided into five groups. The sham-operated group was used as the sham control. The other four groups were double-ovariectomized and assigned to the model, ordinary cellulose (100 g kg(-1) diet), microcrystalline cellulose (100 g kg(-1) diet), and cellulose nanocrystal (100 g kg(-1) diet) groups. As the cellulose particle size decreased, the body weight gain and food intake were decreased. The plasma lipids and hepatic lipids were decreased. In addition, the mRNA levels of cholesterol 7α-hydroxylase, farnesoid X receptor, and 3-hydroxy-3-methylglutaryl coenzyme A reductase were decreased, whereas those of ileal apical sodium-dependent bile acid transporter and intestinal bile acid binding protein were increased. The cecum weight, cecum content, and short-chain fatty acid concentration and the amount of total bile acids in the small intestinal content, as well as the bile acids and neutral steroids in fecal excretion, were increased. These results indicate that as the particle size decreased, cellulose was more effective in preventing ovarian hormone deficiency-induced hyperlipidemia and in improving intestinal health.


Asunto(s)
Ciego/metabolismo , Celulosa/administración & dosificación , Celulosa/química , Ipomoea batatas/química , Metabolismo de los Lípidos , Tamaño de la Partícula , Animales , Ácidos y Sales Biliares/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Dieta , Ácidos Grasos Volátiles/metabolismo , Heces/química , Femenino , Intestino Delgado/metabolismo , Hígado/metabolismo , Nanopartículas/administración & dosificación , Nanopartículas/química , Tamaño de los Órganos , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Ovariectomía , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Simportadores/metabolismo , Triglicéridos/sangre , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA