Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36903633

RESUMEN

Advancements in inexpensive, efficient, and durable oxygen reduction catalysts is important for maintaining the sustainable development of fuel cells. Although doping carbon materials with transition metals or heteroatomic doping is inexpensive and enhances the electrocatalytic performance of the catalyst, because the charge distribution on its surface is adjusted, the development of a simple method for the synthesis of doped carbon materials remains challenging. Here, a non-precious-metal tris (Fe/N/F)-doped particulate porous carbon material (21P2-Fe1-850) was synthesized by employing a one-step process, using 2-methylimidazole, polytetrafluoroethylene, and FeCl3 as raw materials. The synthesized catalyst exhibited a good oxygen reduction reaction performance with a half-wave potential of 0.85 V in an alkaline medium (compared with 0.84 V of commercial Pt/C). Moreover, it had better stability and methanol resistance than Pt/C. This was mainly attributed to the effect of the tris (Fe/N/F)-doped carbon material on the morphology and chemical composition of the catalyst, thereby enhancing the catalyst's oxygen reduction reaction properties. This work provides a versatile method for the gentle and rapid synthesis of highly electronegative heteroatoms and transition metal co-doped carbon materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA