Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966896

RESUMEN

The urgent need for field detection of uranium in seawater is 2-fold: to provide prompt guidance for uranium extraction and to prevent human exposure to nuclear radiation. However, current methods for this purpose are largely hindered by bulky instrumentation, high costs of developed materials, and severe matrix interferences, which limit their further application in the field. Herein, we demonstrated a portable and label-free strategy for the field detection of uranyl in seawater based on the efficient photocleavage of DNA. Further experiments confirmed the generation of ultraviolet (UV) light-induced reactive oxygen species (ROS), such as O2•- and •OH, which fragmented oligomeric DNA in the presence of uranyl and UV light. Detailed studies showed that DNA significantly enhances uranyl absorption in the UV-visible region, leading to the generation of more ROS. A fluorescence system for the selective detection of uranyl in seawater was established by immobilizing two complementary oligonucleotides with the fluorescent dye SYBR Green I. The strategy of UV-induced photocleavage offers high selectivity, excellent interference immunity, and high sensitivity for uranyl, with a detection limit of 6.8 nM. Additionally, the fluorescence can be visually detected using a 3D-printed miniaturized device integrated with a smartphone. This method has been successfully applied to the on-site detection of uranyl in seawater in 18 Chinese coastal cities and along the coast of Hainan Island within 3 min for a single sample. The sample testing and field analysis results indicate that this strategy has promising potential for real-time monitoring of trace uranyl in China's coastal waters. It is expected to be utilized for the rapid assessment of nuclear contamination and nuclear engineering construction.

2.
Anal Chem ; 95(49): 18303-18308, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38019658

RESUMEN

Salivary pepsin has been proposed as a promising diagnostic marker for gastroesophageal reflux disease (GERD). However, the activity of human pepsin is strongly influenced by pH, and the acidic condition (pH ∼ 2) is optimal, which is a contradiction for the pepsin detection kit based on its catalytic activity. Thus, its accurate quantification in saliva (neutral pH) by readily rapid tools with simplicity and low cost is still challenging. Herein, a convenient fluorescence assay has been developed for the rapid detection of pepsin at neutral pH based on its electrostatic interaction with SYBR Green (SG) rather than the bioactivity. At neutral pH, the positively charged SG fluorophore can be effectively adsorbed by the negatively charged pepsin due to the low isoelectric point (pI) and large molecular size of pepsin. Thus, the molecular rotation of SG is limited, and its fluorescence intensity is significantly increased. The strategy was further confirmed to have the same fluorescence response as that of normally active and inactivated pepsin. Due to the unique pI of pepsin, the fluorescence strategy is highly selective for pepsin compared to other proteins. On the basis of this strategy, a smartphone-based fluorescence capture device integrated with a programmed Python program was fabricated for both color recognition and the accurate detection of pepsin within 3 min. Under the optimal conditions, this turn-on sensor allowed for the on-site analysis of pepsin with a detection limit of 0.2 µg/mL. Moreover, this strategy was successfully used to assess salivary pepsin to aid in the noninvasive diagnosis of GERD.


Asunto(s)
Reflujo Gastroesofágico , Saliva , Humanos , Saliva/química , Pepsina A/metabolismo , Electricidad Estática , Reflujo Gastroesofágico/diagnóstico , Reflujo Gastroesofágico/metabolismo , Concentración de Iones de Hidrógeno
3.
RSC Adv ; 13(11): 7614-7620, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36908544

RESUMEN

Hydrolytic dehydrogenation of ammonia borane is a significant and promising approach for on-site hydrogen production at ambient conditions, and developing highly efficient and low-cost catalysts has attracted considerable attention. Herein, waste-biomass-derived activated carbon (AC) was prepared by hydrothermal carbonization and alkali-assisted activation, and non-precious bimetal phosphides (Co-Cu-P) nanocatalysts with a series of different Co/Cu ratios were synthesized on the AC surface through in situ phosphidation method. Owing to the synergetic effects, the optimal Co0.8Cu0.2P/AC presents an outstanding turnover frequency of 26.5 min-1 (25 °C), which is much higher than that of many reported catalysts. The reaction activation energy was measured to be 34.6 kJ mol-1. Benefiting from the ferromagnetic nature of the phosphides, the Co0.8Cu0.2P/AC can be magnetically separated and reused again. After recycling six times, the catalyst still retains 72% of the initial activity, thus indicating great potential for practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA