Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(6): e1011470, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37347782

RESUMEN

The study of carrier state phages challenged the canonical lytic-lysogenic binary, and carrier state appears to be ubiquitous and ecologically important. However, the mechanisms of the carrier state are not well elucidated due to the limited phage models. Herein, we reported phage HQ103, similar to Escherichia coli phage P2. In contrast to the temperate P2 phage, the HQ103 phage does not insert its genome into the bacterial chromosome and displays a dual behavior depending on the temperature. At 37°C, HQ103 lyses the host and forms clear plaques due to the truncation of repressor CI and mutation of promoter Pc. In contrast, HQ103 maintains a carrier state lifestyle with Y. pestis at an environmental temperature (21°C). Mechanistically, we found that the host-encoded histone-like nucleoid-structuring protein H-NS, which is highly expressed at 21°C to silence the Cox promoter Pe and inhibits the phage lytic cycle. Subsequently, the HQ103 carrier state Y. pestis could grow and co-exist with the phage in the soil at 21°C for one month. Thus, this study reveals a novel carrier state lifestyle of phage HQ103 due to the H-NS mediated xenogeneic silencing and demonstrates that the carrier state lifestyle could promote long-term phage-host coexist in nature.


Asunto(s)
Bacteriófagos , Yersinia pestis , Bacteriófagos/genética , Suelo , Portador Sano , Temperatura , Lisogenia
2.
Microb Cell Fact ; 23(1): 89, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528536

RESUMEN

BACKGROUND: Staphylococcus aureus and its single or mixed biofilm infections seriously threaten global public health. Phage therapy, which uses active phage particles or phage-derived endolysins, has emerged as a promising alternative strategy to antibiotic treatment. However, high-efficient phage therapeutic regimens have yet to be established. RESULTS: In this study, we used an enrichment procedure to isolate phages against methicillin-resistant S. aureus (MRSA) XN108. We characterized phage SYL, a new member of the Kayvirus genus, Herelleviridae family. The phage endolysin LysSYL was expressed. LysSYL demonstrated stability under various conditions and exhibited a broader range of efficacy against staphylococcal strains than its parent phage (100% vs. 41.7%). Moreover, dynamic live/dead bacterial observation demonstrated that LysSYL could completely lyse MRSA USA300 within 10 min. Scan and transmission electron microscopy revealed evident bacterial cell perforation and deformation. In addition, LysSYL displayed strong eradication activity against single- and mixed-species biofilms associated with S. aureus. It also had the ability to kill bacterial persisters, and proved highly effective in eliminating persistent S. aureus when combined with vancomycin. Furthermore, LysSYL protected BALB/c mice from lethal S. aureus infections. A single-dose treatment with 50 mg/kg of LysSYL resulted in a dramatic reduction in bacterial loads in the blood, liver, spleen, lungs, and kidneys of a peritonitis mouse model, which resulted in rescuing 100% of mice challenged with 108 colony forming units of S. aureus USA300. CONCLUSIONS: Overall, the data provided in this study highlight the strong therapeutic potential of endolysin LysSYL in combating staphylococcal infections, including mono- and mixed-species biofilms related to S. aureus.


Asunto(s)
Endopeptidasas , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Ratones , Staphylococcus , Staphylococcus aureus , Fagos de Staphylococcus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Biopelículas
3.
Anal Chem ; 95(26): 10008-10016, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37342882

RESUMEN

Phages have already been employed to detect bacteria because of their specific recognition capability and strong infectious activity toward their host. However, the reported single-phage-based techniques are inevitably restricted by false negative results that arose from extremely high strain specificity of phages. In this study, a cocktail composed of three Klebsiella pneumoniae (K. pneumoniae) phages was prepared as a recognition agent to broaden the recognition spectrum for detecting this bacterial species. A total of 155 clinically isolated strains of K. pneumoniae collected from four hospitals were adopted to test its recognition spectrum. A superior recognition rate of 91.6% for the strains was achieved due to the complementarity of the recognition spectra of the three phages composed of the cocktail. However, the recognition rate is as low as 42.3-62.2% if a single phage is employed. Based on the wide-spectrum recognition capability of the phage cocktail, a fluorescence resonance energy transfer method was established for detecting K. pneumoniae strains by employing fluorescein isothiocyanate labeled to the phage cocktail and Au nanoparticles labeled to p-mercaptophenylboronic acid as energy donors and acceptors, respectively. The detection process can be completed within 35 min, with a wide dynamic range of 5.0 × 102-1.0 × 107 CFU/mL. The application potential was verified by applying it to quantitate K. pneumoniae in different sample matrixes. This pioneer work opens an avenue for achieving wide-spectrum detection of different strains belonging to the same bacterial species with the phage cocktail.


Asunto(s)
Klebsiella pneumoniae , Klebsiella pneumoniae/química , Bacteriófagos/aislamiento & purificación , Especificidad de la Especie , Oro , Nanopartículas del Metal
4.
J Biomed Sci ; 30(1): 29, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101261

RESUMEN

Gram-positive (G+) bacterial infection is a great burden to both healthcare and community medical resources. As a result of the increasing prevalence of multidrug-resistant G+ bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), novel antimicrobial agents must urgently be developed for the treatment of infections caused by G+ bacteria. Endolysins are bacteriophage (phage)-encoded enzymes that can specifically hydrolyze the bacterial cell wall and quickly kill bacteria. Bacterial resistance to endolysins is low. Therefore, endolysins are considered promising alternatives for solving the mounting resistance problem. In this review, endolysins derived from phages targeting G+ bacteria were classified based on their structural characteristics. The active mechanisms, efficacy, and advantages of endolysins as antibacterial drug candidates were summarized. Moreover, the remarkable potential of phage endolysins in the treatment of G+ bacterial infections was described. In addition, the safety of endolysins, challenges, and possible solutions were addressed. Notwithstanding the limitations of endolysins, the trends in development indicate that endolysin-based drugs will be approved in the near future. Overall, this review presents crucial information of the current progress involving endolysins as potential therapeutic agents, and it provides a guideline for biomaterial researchers who are devoting themselves to fighting against bacterial infections.


Asunto(s)
Infecciones Bacterianas , Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Humanos , Infecciones Bacterianas/tratamiento farmacológico , Bacterias , Bacterias Grampositivas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
5.
Anal Chem ; 94(27): 9610-9617, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35749272

RESUMEN

As a multidrug-resistant pathogen, Acinetobacter baumannii has long been identified as one of the most common nosocomial bacteria. High-performance recognition probes for wide-spectrum detection of A. baumannii are highly desired to achieve efficient diagnosis and timely treatment of infectious diseases induced by this pathogen. An engineering tail fiber protein (ETFP) named as Gp50 encoded by lytic phage Abp9 was expressed in Escherichia coli and identified as a binding protein for A. baumannii. According to the results of genome sequencing of an A. baumannii wild strain and phage-resistant strains, the binding receptor of ETFP Gp50 is inferred to be a lipopolysaccharide distributed on the bacterial surface. The engineering protein did not show lytic activity to A. baumannii, which facilitates the development of reliable diagnosis kits and biosensors with high flexibility and low false-negative rate. The results of specificity study show that ETFP Gp50 is a species-specific binding protein with a recognition rate of 100% for all tested 77 A. baumannii strains, while that of the natural phage Abp9 is only 27.3%. With the engineering protein, a fluorescence method was developed to detect A. baumannii with a detection range of 2.0 × 102 to 2.0 × 108 cfu mL-1. The method has been used for the quantification of A. baumannii in a diverse sample matrix with acceptable reliability. The work demonstrates the application potential of ETFP Gp50 as an ideal recognition probe for rapid screening of A. baumannii strains in a complicated sample matrix.


Asunto(s)
Acinetobacter baumannii , Bacteriófagos , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Bacteriófagos/genética , Escherichia coli/genética , Reproducibilidad de los Resultados , Virión
6.
J Am Chem Soc ; 142(8): 3959-3969, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31999445

RESUMEN

New agents with particular specificity toward targeted bacteria and superefficacy in antibacterial activity are urgently needed in facing the crisis of worldwide antibiotic resistance. Herein, a novel strategy by equipping bacteriophage (PAP) with photodynamic inactivation (PDI)-active AIEgens (luminogens with aggregation-induced emission property) was presented to generate a type of AIE-PAP bioconjugate with superior capability for both targeted imaging and synergistic killing of certain species of bacteria. The targeting ability inherited from the bacteriophage enabled the bioconjugates to specifically recognize the host bacteria with preserved infection activity of phage itself. Meanwhile, the AIE characteristic empowered them a monitoring functionality, and the real-time tracking of their interactions with targets was therefore realized via convenient fluorescence imaging. More importantly, the PDI-active AIEgens could serve as powerful in situ photosensitizers producing high-efficiency reactive oxygen species (ROS) under white light irradiation. As a result, selective targeting and synergistic killing of both antibiotic-sensitive and multi-drug-resistant (MDR) bacteria were successfully achieved in in vitro and in vivo antibacterial tests with excellent biocompatibility. This novel AIE-phage integrated strategy would diversify the existing pool of antibacterial agents and inspire the development of promising drug candidates in the future.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacteriófagos/fisiología , Microscopía Fluorescente , Pseudomonas aeruginosa/efectos de los fármacos
7.
Anal Chem ; 92(4): 3340-3345, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31967786

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) has been well-recognized as one of the most common multiresistant bacteria threatening human health. Broad-spectrum recognition of multiple MRSA strains can meet the urgent demands for efficient diagnosis and subsequent decision of relevant treatment of MRSA-induced infections. Here, recombinant cell-binding domain (CBD) and green fluorescent protein-fused CBD of MRSA bacteriophage were expressed in soluble form. Distinct from the strain-specific MRSA bacteriophage, both recombinant CBD proteins displayed broad-spectrum recognition capability toward all five staphylococcal cassette chromosome mec types of MRSA. Furthermore, they did not display any lytic activity toward the host bacteria, which facilitated the capture of whole MRSA cells with ideal flexibility for downstream manipulation and tracing. For demonstration of their application potential, a flow cytometry method employing the recombinant CBD proteins as the recognition agents was established to detect MRSA within a dynamic range of 1.5 × 102 to 1.5 × 106 cfu mL-1. The method can exclude potential interference from methicillin-sensitive Staphylococcus aureus strains and other bacterial species. The recombinant CBD proteins were also successfully employed in antibiotic susceptibility testing of MRSA with a microplate-based method. The obtained results were consistent with those by the standard broth microdilution method. The satisfying results demonstrated their great application potential in clinical diagnosis and treatment of MRSA-induced infections.


Asunto(s)
Bacteriófagos/química , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
8.
Nucleic Acids Res ; 46(9): 4505-4514, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29514250

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen with a relatively large genome, and has been shown to routinely lose genomic fragments during environmental selection. However, the underlying molecular mechanisms that promote chromosomal deletion are still poorly understood. In a recent study, we showed that by deleting a large chromosomal fragment containing two closely situated genes, hmgA and galU, P. aeruginosa was able to form 'brown mutants', bacteriophage (phage) resistant mutants with a brown color phenotype. In this study, we show that the brown mutants occur at a frequency of 227 ± 87 × 10-8 and contain a deletion ranging from ∼200 to ∼620 kb. By screening P. aeruginosa transposon mutants, we identified mutL gene whose mutation constrained the emergence of phage-resistant brown mutants. Moreover, the P. aeruginosa MutL (PaMutL) nicking activity can result in DNA double strand break (DSB), which is then repaired by non-homologous end joining (NHEJ), leading to chromosomal deletions. Thus, we reported a noncanonical function of PaMutL that promotes chromosomal deletions through NHEJ to prevent phage predation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófagos , Deleción Cromosómica , Reparación del ADN por Unión de Extremidades , Proteínas MutL/metabolismo , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Roturas del ADN de Doble Cadena , Proteínas MutL/genética , Proteínas MutL/fisiología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/virología , Reparación del ADN por Recombinación
9.
Chem Res Toxicol ; 32(5): 840-849, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-30938985

RESUMEN

N6-methyladenine (6mA), a newly identified epigenetic modification, plays important roles in regulation of various biological processes. However, the effect of 6mA on DNA replication has been little addressed. In this work, we investigated how 6mA affected DNA replication by DNA polymerase of Pseudomonas aeruginosa Phage PaP1 (gp90 exo-). The presence of 6mA, as well as its intermediate hypoxanthine (Hyp), inhibited DNA replication by gp90 exo-. The 6mA reduced dTTP incorporation efficiency by 10-fold and inhibited next-base extension efficiency by 100-fold. Differently, dCTP was preferentially incorporated opposite Hyp among four dNTPs. Gp90 exo- reduced the extension priority beyond the 6mA:T pair rather than the 6mA:C mispair and preferred to extend beyond Hyp:C rather than the Hyp:T pair. Incorporation of dTTP opposite 6mA and dCTP opposite Hyp showed fast burst phases. The burst rate and burst amplitude were both reduced for 6mA compared with unmodified A. Moreover, the total incorporation efficiency ( kpol/ Kd,dNTP) was decreased for dTTP incorporation opposite 6mA and dCTP incorporation opposite Hyp compared with dTTP incorporation opposite A. 6mA reduced the incorporation rate ( kpol), and Hyp increased the dissociation constant ( Kd,dNTP). However, 6mA or Hyp on template did not affect the binding of DNA polymerase to DNA in binary or ternary complexes. This work provides new insight into the inhibited effects of epigenetic modification of 6mA on DNA replication in PaP1.


Asunto(s)
Adenina/metabolismo , Bacteriófagos/enzimología , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/metabolismo , Proteínas Virales/metabolismo , Adenina/análogos & derivados , ADN/química , Espectroscopía de Resonancia por Spin del Electrón , Cinética
10.
Anal Chem ; 90(24): 14462-14468, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30481459

RESUMEN

Rapid and accurate bacterial detection is crucial to an early diagnosis for treating various infectious diseases. A recombinant tail fiber protein (P069) of the Pseudomonas aeruginosa ( P. aeruginosa) phage was expressed in Escherichia coli. After renaturation at a low temperature, the inclusion body of P069 was successfully transformed to an aqueous soluble protein that retained the capacity for recognizing P. aeruginosa. The recombinant P069 did not show lytic activity to P. aeruginosa, which facilitated the capture and manipulation of bacterial whole cells with a high flexibility for downstream identification and detection. Bioluminescent and fluorescent methods using this biorecognition element allowed P. aeruginosa detection with the detection limits of 6.7 × 102 CFU mL-1 and 1.7 × 102 CFU mL-1, respectively. Moreover, the specificity investigations showed that P069 was a species-specific protein. Therefore, it avoided the potential false negative results originating from the excessive high specificity of phage toward a given strain. It has been successfully applied to detect P. aeruginosa in spiked samples with acceptable recovery values ranging from 88% to 98%. The above results demonstrate that P069 is an ideal biorecognition element for the detection of P. aeruginosa in complicated sample matrixes.


Asunto(s)
Bacteriófagos , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de la Cola de los Virus/metabolismo , Técnicas Biosensibles , Humanos , Unión Proteica , Pseudomonas aeruginosa/aislamiento & purificación , Especificidad de la Especie
11.
Curr Microbiol ; 75(10): 1362-1371, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29922971

RESUMEN

ß-Galactosidase is an essential enzyme for the metabolism of lactose in human beings and has an important role in the treatment of lactose intolerance (LI). ß-Galactosidase expressed by intestinal microflora, such as lactic acid bacteria (LAB), also alleviates LI. A promising approach to LI management is to exploit a food-grade LAB delivery system that can inhabit the human intestine and overproduce ß-galactosidase. In this study, we constructed a food-grade ß-galactosidase surface display delivery system and then integrated into the chromosome of Lactococcus lactis (L. lactis) NZ9000 using recombination. Western blot and immunofluorescence analyses confirmed that ß-galactosidase was expressed on the cell surface of recombinant L. lactis stain NZ-SDL. The whole-cell biocatalyst exhibits Vmax and Km values of 121.38 ± 7.17 UONPG/g and 65.36 ± 5.54 mM, based on ONPG hydrolysis. The optimum temperature for enzyme activity is 37 °C and the optimum pH is 5.0. Activity of the whole-cell biocatalyst is promoted by Mg2+, Ca2+, and K+, but inhibited by Zn2+, Fe2+, and Fe3+. The system has a thermal stability similar to purified ß-galactosidase but better pH stability, and is also more stable in artificial intestinal juice. Oral administration and intraperitoneal injections of NZ-SDL in mice cause no detectable health effects. In conclusion, we have successfully constructed a food-grade gene expression system in L. lactis that displays ß-galactosidase on the cell surface. This system exhibits good enzyme activity and stability in vitro, and is safe in vivo. It is therefore a promising candidate for use in LI management.


Asunto(s)
Membrana Celular/metabolismo , Expresión Génica , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , Animales , Biocatálisis , Clonación Molecular , Activación Enzimática , Femenino , Técnica del Anticuerpo Fluorescente , Ingeniería Genética , Vectores Genéticos/genética , Hidrólisis , Ratones , Transporte de Proteínas
12.
Anal Chem ; 89(3): 1916-1921, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28208306

RESUMEN

A virulent bacteriophage highly specific to Pseudomonas aeruginosa (P. aeruginosa) was isolated from hospital sewage using a lambda bacteriophage isolation protocol. The bacteriophage, named as PAP1, was used to functionalize tosyl-activated magnetic beads to establish a bacteriophage-affinity strategy for separation and detection of viable P. aeruginosa. Recognition of the target bacteria by tail fibers and baseplate of the bacteriophage led to capture of P. aeruginosa onto the magnetic beads. After a replication cycle of about 100 min, the progenies lysed the target bacteria and released the intracellular adenosine triphosphate. Subsequently, firefly luciferase-adenosine triphosphate bioluminescence system was used to quantitate the amount of P. aeruginosa. This bacteriophage-affinity strategy for viable P. aeruginosa detection showed a linear range of 6.0 × 102 to 3.0 × 105 CFU mL-1, with a detection limit of 2.0 × 102 CFU mL-1. The whole process for separation and detection could be completed after bacteria capture, bacteriophage replication, and bacteria lysis within 2 h. Since the isolated bacteriophage recognized the target bacteria with very high specificity, the proposed strategy did not show any signal response to all of the tested interfering bacteria. Furthermore, it excluded the interference from inactivated P. aeruginosa because the bacteriophage could replicate only in viable cells. The proposed strategy had been applied for detection of P. aeruginosa in glucose injection, human urine, and rat plasma. In the further work, this facile bacteriophage-affinity strategy could be extended for detection of other pathogens by utilizing virulent bacteriophage specific to other targets.


Asunto(s)
Técnicas Biosensibles/métodos , Separación Inmunomagnética/métodos , Fagos Pseudomonas/fisiología , Pseudomonas aeruginosa/aislamiento & purificación , Adenosina Trifosfato/metabolismo , Animales , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Humanos , Límite de Detección , Luminiscencia , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Fagos Pseudomonas/patogenicidad , Fagos Pseudomonas/ultraestructura , Pseudomonas aeruginosa/metabolismo , Ratas Sprague-Dawley , Virulencia
13.
Environ Sci Technol ; 51(4): 2262-2270, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28118709

RESUMEN

Bezafibrate (BF), a frequently detected pharmaceutical in the aquatic environment, could be effectively removed by ozonation. However, the toxicity of treated water increased, suggesting the generation of toxic oxidation products (OPs). In this study, eight OPs of BF ozonation were identified using a LTQ Orbitrap hybrid mass spectrometer coupled with HPLC, and six of them have not been previously reported during BF ozonation. Based on the abundant fragments and high assurance of accurate molar mass, structure elucidation was comprehensively performed and discussed. Hydroxylation, loss of methyl propionic acid group, and Crigée mechanism were observed as the oxidation mechanisms of BF ozonation. The toxicity of identified OPs calculated by quantitative structure activity relationship indicated that three OPs were probably more toxic than the precursor compound BF. This result together with the evolution of identified OPs in the treated solutions, indicated that two OPs, namely N-(3,4-dihydroxyphenethyl)-4-chlorobenzamide and N-(2,4-dihydroxyphenethyl)-4-chlorobenzamide, were the potential toxicity-causing OPs during BF ozonation. To the best of our knowledge, this is the first attempt to identify toxicity-causing OPs during the BF ozonation.


Asunto(s)
Bezafibrato , Purificación del Agua , Oxidación-Reducción , Ozono/química , Contaminantes Químicos del Agua/química
14.
Chem Eng J ; 325: 188-198, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29104449

RESUMEN

The enhancement effect of an environmentally friendly reducing agent, ascorbic acid (AA), on trichloroethene (TCE) degradation by Fe(III)-activated calcium peroxide (CP) was evaluated. The addition of AA accelerated the transformation of Fe(III) to Fe(II), and the complexation of Fe(III)/Fe(II) with AA and its products alleviated the precipitation of dissolved iron. These impacts enhanced the generation of reactive oxygen species (ROSs). Investigation of ROSs using chemical probe tests, electron paramagnetic resonance (EPR) tests, and radical scavenger tests strongly confirm large production of hydroxyl radicals (HO•) that is responsible for TCE degradation. The generation of Cl- from the degraded TCE was complete in the enhanced CP/Fe(III)/AA system. The investigation of solution matrix effects showed that the TCE degradation rate decreases with the increase in solution pH, while Cl-, SO42- and NO3- anions have minor impact. Conversely, HCO3- significantly inhibited TCE degradation due to pH elevation and HO• scavenging. The results of experiments performed using actual groundwater indicated that an increase in reagent doses are required for effective TCE removal. In summary, the potential effectiveness of the CP/Fe(III)/AA oxidation system for remediation of TCE contaminated groundwater has been demonstrated. Additional research is needed to develop the system for practical implementation.

15.
Chem Eng J ; 309: 22-29, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28959136

RESUMEN

Complete degradation of benzene by the Fe(III)-activated sodium percarbonate (SPC) system is demonstrated. Removal of benzene at 1.0 mM was seen within 160 min, depending on the molar ratios of SPC to Fe(III). A mechanism of benzene degradation was elaborated by free-radical probe-compound tests, free-radical scavengers tests, electron paramagnetic resonance (EPR) analysis, and determination of Fe(II) and H2O2 concentrations. The degradation products were also identified using gas chromatography-mass spectrometry method. The hydroxyl radical (HO.) was the leading species in charge of benzene degradation. The formation of HO. was strongly dependent on the generation of the organic compound radical (R.) and superoxide anion radical (O.). Benzene degradation products included hydroxylated derivatives of benzene (phenol, hydroquinone, benzoquinone, and catechol) and aliphatic acids (oxalic and fumaric acids). The proposed degradation pathways are consistent with radical formation and identified products. The investigation of selected matrix constituents showed that the Cl and HCO3 had inhibitory effects on benzene degradation. Natural organic matter (NOM) had accelerating influence in degrading benzene. The developed system was tested with groundwater samples and it was found that the Fe(III)-activated SPC has a great potential in effective remediation of benzene-contaminated groundwater while more further studies should be done for its practical application in the future because of the complex subsurface environment.

16.
Water Sci Technol ; 76(11-12): 3289-3298, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29236008

RESUMEN

A biological denitrifying process was employed for the treatment of nanofiltration (NF) concentrate with high conductivity, which was generated from coking wastewater in a sequencing batch reactor (SBR). The results showed that the average removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and nitrate were 47.6%, 61.1% and 94.6%, respectively. Different microbial communities were identified by sequencing the V1-V3 region of the 16S rRNA gene using the MiSeq platform, showing that the most abundant bacterial phylum in the SBR system was Proteobacteria, with the subclasses ß-Proteobacteria and α-Proteobacteria being dominant. The key microorganisms responsible for denitrification belonged to the genera Thauera, Hyphomicrobium, Methyloversatilis, Hydrogenophaga, Ignavibacterium, Rubrivivax and Parvibaculum. Quantitative real-time polymerase chain reaction was used to assess the absolute abundance of microbial genera, using 16S rRNAs and denitrifying genes such as narG, nirS, nirK, nosZ, in both SBR start-up and stable operation. The abundances of narG, nirK and nosZ were lower during stable operation than those during the start-up period. The abundance of nirS at a level of 104-105copies/ng in DNA was much higher than that of nirK, thus being the dominant functional gene in nitrite reduction.


Asunto(s)
Reactores Biológicos/microbiología , Coque/análisis , Aguas Residuales/química , Bacterias/clasificación , Bacterias/genética , Betaproteobacteria/genética , Análisis de la Demanda Biológica de Oxígeno , Desnitrificación , Residuos Industriales/análisis , Nitratos , Nitritos , Nitrógeno/química , Proteobacteria/genética , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Eliminación de Residuos Líquidos
17.
Mol Microbiol ; 98(2): 243-57, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26138696

RESUMEN

Streptococcus suis has emerged as a causative agent of human meningitis and streptococcal toxic shock syndrome over the last years. The high pathogenicity of S. suis may be due in part to a laterally acquired pathogenicity island (renamed SsPI-1), which can spontaneously excise and transfer to recipients. Cells harboring excised SsPI-1 can potentially lose this island if cell division occurs prior to its reintegration; however, attempts to cure SsPI-1 from the host cells have been unsuccessful. Here, we report that an SsPI-1-borne Epsilon/Zeta toxin-antitoxin system (designated SezAT) promotes SsPI-1 stability in bacterial populations. The sezAT locus consists of two closely linked sezT and sezA genes encoding a toxin and its cognate antitoxin, respectively. Overproduction of SezT induces a bactericidal effect that can be neutralized by co-expression of SezA, but not by its later action. When devoid of a functional SezAT system, large-scale deletion of SsPI-1 is straightforward. Thus, SezAT serves to ensure inheritance of SsPI-1 during cell division, which may explain the persistence of epidemic S. suis. This report presents the first functional characterization of TA loci in S. suis, and the first biochemical evidence for the adaptive significance of the Epsilon/Zeta system in the evolution of pathogen virulence.


Asunto(s)
Antitoxinas/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Islas Genómicas , Streptococcus suis/genética , Streptococcus suis/patogenicidad , Cromosomas Bacterianos , Humanos , Infecciones Estreptocócicas/microbiología , Virulencia/genética
18.
Virus Genes ; 52(4): 538-51, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27052734

RESUMEN

Most phages contain DNA polymerases, which are essential for DNA replication and propagation in infected host bacteria. However, our knowledge on phage-encoded DNA polymerases remains limited. This study investigated the function of a novel DNA polymerase of PaP1, which is the lytic phage of Pseudomonas aeruginosa. PaP1 encodes its sole DNA polymerase called Gp90 that was predicted as an A-family DNA polymerase with polymerase and 3'-5' exonuclease activities. The sequence of Gp90 is homologous but not identical to that of other A-family DNA polymerases, such as T7 DNA polymerases (Pol) and DNA Pol I. The purified Gp90 demonstrated a polymerase activity. The processivity of Gp90 in DNA replication and its efficiency in single-dNTP incorporation are similar to those of T7 Pol with processive thioredoxin (T7 Pol/trx). Gp90 can degrade ssDNA and dsDNA in 3'-5' direction at a similar rate, which is considerably lower than that of T7 Pol/trx. The optimized conditions for polymerization were a temperature of 37 °C and a buffer consisting of 40 mM Tris-HCl (pH 8.0), 30 mM MgCl2, and 200 mM NaCl. These studies on DNA polymerase encoded by PaP1 help advance our knowledge on phage-encoded DNA polymerases and elucidate PaP1 propagation in infected P. aeruginosa.


Asunto(s)
Bacteriófagos/genética , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/genética , ADN/genética , Exonucleasas/genética , Pseudomonas aeruginosa/genética , Secuencia de Aminoácidos , Replicación del ADN/genética , Proteínas Asociadas a Pancreatitis , Alineación de Secuencia , Tiorredoxinas/genética
19.
Chem Eng J ; 302: 187-193, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28943778

RESUMEN

The ability of Fe(II)-activated calcium peroxide (CaO2) to remove benzene is examined with a series of batch experiments. The results showed that benzene concentrations were reduced by 20 to 100% within 30 min. The magnitude of removal was dependent on the CaO2/Fe(II)/Benzene molar ratio, with much greater destruction observed for ratios of 4/4/1 or greater. An empirical equation was developed to quantify the destruction rate dependence on reagent composition. The presence of oxidative hydroxyl radicals (HO•) and reductive radicals (primarily O2•-) was identified by probe compound testing and electron paramagnetic resonance (EPR) tests. The results of the EPR tests indicated that the application of CaO2/Fe(II) enabled the radical intensity to remain steady for a relatively long time. The effect of initial solution pH was also investigated, and CaO2/Fe(II) enabled benzene removal over a wide pH range of 3.0~9.0. The results of radical scavenging tests showed that benzene removal occurred primarily by HO• oxidation in the CaO2/Fe(II) system, although reductive radicals also contributed. The intermediates in benzene destruction were identified to be phenol and biphenyl. The results indicate that Fe(II)-activated CaO2 is a feasible approach for treatment of benzene in contaminated groundwater remediation.

20.
Chem Eng J ; 281: 286-294, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26549979

RESUMEN

The performance of Fe(III)-based catalyzed sodium percarbonate (SPC) for stimulating the oxidation of tetrachloroethene (PCE) for groundwater remediation applications was investigated. The chelating agents citric acid monohydrate (CIT), oxalic acid (OA), and Glutamic acid (Glu) significantly enhanced the degradation of PCE. Conversely, ethylenediaminetetraacetic acid (EDTA) had a negative impact on PCE degradation, which may due to its strong Fe chelation and HO• scavenging abilities. However, excessive SPC or chelating agent will retard PCE degradation. In addition, investigations using free radical probe compounds and radical scavengers revealed that PCE was primarily degraded by HO• radical oxidation in both the chelated and non-chelated systems, while O2•- also participated in the non-chelated system and the OA and Glu modified systems. According to the electron paramagnetic resonance (EPR) studies, the presence of HO• in the Fe(III)/SPC system was maintained much longer than that in the Fe(II)/SPC system. The results indicated that the addition of CIT, OA or Glu indeed enhanced the generation of HO• in the first 10 min and promoted degradation efficiency by increasing the amount of Fe(III) and maintaining the concentration of HO• radicals in solution. In conclusion, chelated Fe(III)-based catalyzed SPC oxidation is a promising method for the remediation of PCE-contaminated groundwater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA