Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Cancer ; 23(1): 1194, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057796

RESUMEN

BACKGROUND: Myxofibrosarcoma is a rare malignant soft tissue sarcoma characterised by multiple local recurrence and can become of higher grade with each recurrence. Consequently, myxofibrosarcoma represents a burden for patients, a challenge for clinicians, and an interesting disease to study tumour progression. Currently, few myxofibrosarcoma preclinical models are available. METHODS: In this paper, we present a spontaneously immortalised myxofibrosarcoma patient-derived cell line (MF-R 3). We performed phenotypic characterization through multiple biological assays and analyses: proliferation, clonogenic potential, anchorage-independent growth and colony formation, migration, invasion, AgNOR staining, and ultrastructural evaluation. RESULTS: MF-R 3 cells match morphologic and phenotypic characteristics of the original tumour as 2D cultures, 3D aggregates, and on the chorioallantoic membrane of chick embryos. Overall results show a clear neoplastic potential of this cell line. Finally, we tested MF-R 3 sensitivity to anthracyclines in 2D and 3D conditions finding a good response to these drugs. CONCLUSIONS: In conclusion, we established a novel patient-derived myxofibrosarcoma cell line that, together with the few others available, could serve as an important model for studying the molecular pathogenesis of myxofibrosarcoma and for testing new drugs and therapeutic strategies in diverse experimental settings.


Asunto(s)
Fibrosarcoma , Histiocitoma Fibroso Maligno , Sarcoma , Animales , Adulto , Humanos , Embrión de Pollo , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Línea Celular Tumoral
2.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683035

RESUMEN

The success of regenerative medicine in various clinical applications depends on the appropriate selection of the source of mesenchymal stem cells (MSCs). Indeed, the source conditions, the quality and quantity of MSCs, have an influence on the growth factors, cytokines, extracellular vesicles, and secrete bioactive factors of the regenerative milieu, thus influencing the clinical result. Thus, optimal source selection should harmonize this complex setting and ensure a well-personalized and effective treatment. Mesenchymal stem cells (MSCs) can be obtained from several sources, including bone marrow and adipose tissue, already used in orthopedic regenerative applications. In this sense, for bone, dental, and oral injuries, MSCs could provide an innovative and effective therapy. The present review aims to compare the properties (proliferation, migration, clonogenicity, angiogenic capacity, differentiation potential, and secretome) of MSCs derived from bone marrow, adipose tissue, and dental tissue to enable clinicians to select the best source of MSCs for their clinical application in bone and oral tissue regeneration to delineate new translational perspectives. A review of the literature was conducted using the search engines Web of Science, Pubmed, Scopus, and Google Scholar. An analysis of different publications showed that all sources compared (bone marrow mesenchymal stem cells (BM-MSCs), adipose tissue mesenchymal stem cells (AT-MSCs), and dental tissue mesenchymal stem cells (DT-MSCs)) are good options to promote proper migration and angiogenesis, and they turn out to be useful for gingival, dental pulp, bone, and periodontal regeneration. In particular, DT-MSCs have better proliferation rates and AT and G-MSC sources showed higher clonogenicity. MSCs from bone marrow, widely used in orthopedic regenerative medicine, are preferable for their differentiation ability. Considering all the properties among sources, BM-MSCs, AT-MSCs, and DT-MSCs present as potential candidates for oral and dental regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Ortopedia , Tejido Adiposo , Células de la Médula Ósea , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Odontología , Células Madre Mesenquimatosas/metabolismo
3.
Sensors (Basel) ; 21(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34640704

RESUMEN

Cellular and subcellular spatial colocalization of structures and molecules in biological specimens is an important indicator of their co-compartmentalization and interaction. Presently, colocalization in biomedical images is addressed with visual inspection and quantified by co-occurrence and correlation coefficients. However, such measures alone cannot capture the complexity of the interactions, which does not limit itself to signal intensity. On top of the previously developed density distribution maps (DDMs), here, we present a method for advancing current colocalization analysis by introducing co-density distribution maps (cDDMs), which, uniquely, provide information about molecules absolute and relative position and local abundance. We exemplify the benefits of our method by developing cDDMs-integrated pipelines for the analysis of molecules pairs co-distribution in three different real-case image datasets. First, cDDMs are shown to be indicators of colocalization and degree, able to increase the reliability of correlation coefficients currently used to detect the presence of colocalization. In addition, they provide a simultaneously visual and quantitative support, which opens for new investigation paths and biomedical considerations. Finally, thanks to the coDDMaker software we developed, cDDMs become an enabling tool for the quasi real time monitoring of experiments and a potential improvement for a large number of biomedical studies.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Reproducibilidad de los Resultados , Proyectos de Investigación
4.
Invest New Drugs ; 38(3): 675-689, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31264066

RESUMEN

Osteosarcoma (OS) is the most common primary malignant bone tumor and mainly affects children and adolescents. The OS five-year survival rate remains very low. Thus, novel therapeutic protocols for the treatment of OS are needed. Several approaches targeting deregulated signaling pathways have been proposed. The antitumoral effects of polyphenols, which are naturally occurring compounds with potent antioxidant and anti-inflammatory activity, have been investigated in different tumors. Gossypol, which is a natural polyphenolic aldehyde isolated from the seeds of the cotton plant, has been shown to exert antitumoral activity in leukemia and lymphoma and in breast, head and neck, colon and prostate cancers. Therefore, in this study, we evaluated the effect of AT-101, which is the (-) enantiomer and more active form of gossypol, on the growth of human and murine OS cells in vitro and in vivo. Several clinical trials employing AT-101 have been performed, and some clinical trials are ongoing. Our results showed for the first time that AT-101 significantly inhibits OS cell growth in a dose- and time-dependent manner, inducing apoptosis and necrosis and partially activating autophagy. Our results demonstrated that AT-101 inhibits prosurvival signaling pathways depending on Akt, p38 MAPK and JNK. In addition, treatment with AT-101 increases the survival of OS-bearing mice. Overall, these results suggest that AT-101 is a candidate chemo-supportive molecule for the development of novel chemotherapeutic protocols for the treatment of OS.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Gosipol/análogos & derivados , Osteosarcoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Gosipol/farmacología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Osteosarcoma/metabolismo , Polifenoles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
J Cell Physiol ; 233(8): 6241-6249, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29345324

RESUMEN

Sheep is a relevant large animal model that is frequently used to test innovative tissue engineering (TE) approaches especially for bone reconstruction. Mesenchymal stem cells (MSCs) are used in TE applications because they represent key component of adult tissue repair. Importantly, MSCs from different species show similar characteristics, which facilitated their application in translational studies using animal models. Nowadays, many researches are focusing on the use of ovine mesenchymal stem cells (oMSCs) in orthopedic preclinical settings for regenerative medicine purposes. Therefore, there is a need to amplify our knowledge on the mechanisms underlying the behaviour of these cells. Recently, several studies have shown that MSC function is largely dependent on factors that MSCs release in the environment, as well as, in conditioned medium (CM). It has been demonstrated that MSCs through autocrine and paracrine signals are able to stimulate proliferation, migration, and differentiation of different type of cells including themselves. In this study, we investigated the effects of the CM produced by oMSCs on oMSCs themselves and we explored the signal pathways involved. We observed that CM caused an enhancement of oMSC migration. Furthermore, we found that CM increased levels of two membrane proteins involved in cell migration, Aquaporin 1 (AQP1), and C-X-C chemokine receptor type 4 (CXCR4), and activated Akt and Erk intracellular signal pathways. In conclusion, taken together our results suggest the high potential of autologous CM as a promising tool to modulate behaviour of MSCs thus improving their use in therapeutically approaches.


Asunto(s)
Acuaporina 1/metabolismo , Células Madre Mesenquimatosas/metabolismo , Comunicación Paracrina/fisiología , Receptores CXCR4/metabolismo , Ovinos/metabolismo , Animales , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Medios de Cultivo Condicionados/metabolismo , Transducción de Señal/fisiología , Cicatrización de Heridas/fisiología
6.
Int J Mol Sci ; 19(11)2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30463350

RESUMEN

Osteosarcoma therapy might be moving toward nanotechnology-based drug delivery systems to reduce the cytotoxicity of antineoplastic drugs and improve their pharmacokinetics. In this paper, we present, for the first time, an extensive chemical and in vitro characterization of dual-loaded photo- and chemo-active keratin nanoparticles as a novel drug delivery system to treat osteosarcoma. The nanoparticles are prepared from high molecular weight and hydrosoluble keratin, suitably functionalized with the photosensitizer Chlorin-e6 (Ce6) and then loaded with the chemotherapeutic drug Paclitaxel (PTX). This multi-modal PTX-Ce6@Ker nanoformulation is prepared by both drug-induced aggregation and desolvation methods, and a comprehensive physicochemical characterization is performed. PTX-Ce6@Ker efficacy is tested on osteosarcoma tumor cell lines, including chemo-resistant cells, using 2D and 3D model systems. The single and combined contributions of PTX and Ce6 is evaluated, and results show that PTX retains its activity while being vehiculated through keratin. Moreover, PTX and Ce6 act in an additive manner, demonstrating that the combination of the cytostatic blockage of PTX and the oxidative damage of ROS upon light irradiation have a far superior effect compared to singularly administered PTX or Ce6. Our findings provide the proof of principle for the development of a novel, nanotechnology-based drug delivery system for the treatment of osteosarcoma.


Asunto(s)
Sistemas de Liberación de Medicamentos , Queratinas/química , Nanotecnología , Osteosarcoma/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Nanopartículas/química , Nanopartículas/toxicidad , Nanopartículas/ultraestructura , Osteosarcoma/patología , Paclitaxel/farmacología
7.
Int J Mol Sci ; 18(9)2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28832547

RESUMEN

The aim of this study was to exploit silk fibroin's properties to develop innovative composite microcarriers for mesenchymal stem cell (MSCs) adhesion and proliferation. Alginate microcarriers were prepared, added to silk fibroin solution, and then treated with ethanol to induce silk conformational transition. Microcarriers were characterized for size distribution, coating stability and homogeneity. Finally, in vitro cytocompatibility and suitability as delivery systems for MSCs were investigated. Results indicated that our manufacturing process is consistent and reproducible: silk/alginate microcarriers were stable, with spherical geometry, about 400 µm in average diameter, and fibroin homogeneously coated the surface. MSCs were able to adhere rapidly onto the microcarrier surface and to cover the surface of the microcarrier within three days of culture; moreover, on this innovative 3D culture system, stem cells preserved their metabolic activity and their multi-lineage differentiation potential. In conclusion, silk/alginate microcarriers represent a suitable support for MSCs culture and expansion. Since it is able to preserve MSCs multipotency, the developed 3D system can be intended for cell delivery, for advanced therapy and regenerative medicine applications.


Asunto(s)
Alginatos/química , Fibroínas/química , Regeneración Tisular Dirigida/métodos , Células Madre Mesenquimatosas/fisiología , Microesferas , Trasplante de Células Madre/métodos , Adulto , Alginatos/efectos adversos , Animales , Bombyx/química , Adhesión Celular , Proliferación Celular , Células Cultivadas , Femenino , Fibroínas/efectos adversos , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos
8.
Nanomedicine ; 12(7): 1885-1897, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27133189

RESUMEN

Conventional photodynamic therapy has shown to be beneficial in the treatment of a variety of tumors. However, one of its major limitations is the inadequate penetration depth of visible light. In order to overcome this constraint, we developed 80nm poly-methylmethacrylate core-shell fluorescent nanoparticles (FNP) loaded with the photosensitizer tetrasulfonated aluminum phthalocyanine (Ptl). To demonstrate the efficacy of our Ptl@FNP we performed in vitro and in vivo studies using a human prostate tumor model. Our data reveal that Ptl@FNP are internalized by tumor cells, favour Ptl intracellular accumulation, and efficiently trigger cell death through the generation of ROS upon irradiation with 680nm light. When directly injected into tumors intramuscularly induced in SCID mice, Ptl@FNP upon irradiation significantly reduce tumor growth with higher efficiency than the bare Ptl. Collectively, these results demonstrate that the newly developed nanoparticles may be utilized as a delivery system for antitumor phototherapy in solid cancers.


Asunto(s)
Indoles/administración & dosificación , Nanopartículas , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Línea Celular Tumoral , Humanos , Isoindoles , Masculino , Ratones , Ratones SCID
9.
J Transl Med ; 12: 95, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24716831

RESUMEN

BACKGROUND: In osteosarcoma (OS) and most Ewing sarcoma (EWS) patients, the primary tumor originates in the bone. Although tumor resection surgery is commonly used to treat these diseases, it frequently leaves massive bone defects that are particularly difficult to be treated. Due to the therapeutic potential of mesenchymal stem cells (MSCs), OS and EWS patients could benefit from an autologous MSCs-based bone reconstruction. However, safety concerns regarding the in vitro expansion of bone marrow-derived MSCs have been raised. To investigate the possible oncogenic potential of MSCs from OS or EWS patients (MSC-SAR) after expansion, this study focused on a biosafety assessment of MSC-SAR obtained after short- and long-term cultivation compared with MSCs from healthy donors (MSC-CTRL). METHODS: We initially characterized the morphology, immunophenotype, and differentiation multipotency of isolated MSC-SAR. MSC-SAR and MSC-CTRL were subsequently expanded under identical culture conditions. Cells at the early (P3/P4) and late (P10) passages were collected for the in vitro analyses including: sequencing of genes frequently mutated in OS and EWS, evaluation of telomerase activity, assessment of the gene expression profile and activity of major cancer pathways, cytogenetic analysis on synchronous MSCs, and molecular karyotyping using a comparative genomic hybridization (CGH) array. RESULTS: MSC-SAR displayed comparable morphology, immunophenotype, proliferation rate, differentiation potential, and telomerase activity to MSC-CTRL. Both cell types displayed signs of senescence in the late stages of culture with no relevant changes in cancer gene expression. However, cytogenetic analysis detected chromosomal anomalies in the early and late stages of MSC-SAR and MSC-CTRL after culture. CONCLUSIONS: Our results demonstrated that the in vitro expansion of MSCs does not influence or favor malignant transformation since MSC-SAR were not more prone than MSC-CTRL to deleterious changes during culture. However, the presence of chromosomal aberrations supports rigorous phenotypic, functional and genetic evaluation of the biosafety of MSCs, which is important for clinical applications.


Asunto(s)
Células de la Médula Ósea/patología , Células Madre Mesenquimatosas/patología , Osteosarcoma/patología , Seguridad , Adolescente , Adulto , Diferenciación Celular , Niño , Aberraciones Cromosómicas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
10.
Cytotherapy ; 16(11): 1476-1485, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24950679

RESUMEN

BACKGROUND AIMS: Multipotency is one of the hallmarks of mesenchymal stromal cells (MSCs). Given the widespread adoption of MSC-based clinical applications, the need for rapid and reliable methods to estimate MSC multipotency is demanding. Adipogenic potential is commonly evaluated by staining cell lipid droplets with oil red O. This cytochemical assay is performed at the terminal stage of adipogenic induction (21-28 days) and necessitates the destruction of the specimen. In this study, we investigated whether it is possible to assess MSC adipogenic differentiation in a more efficient, timely and non-destructive manner, while monitoring in vitro secretion of adiponectin, a hormone specifically secreted by adipose tissue. METHODS: A commercially available enzyme-linked immunosorbent assay kit was used to quantify adiponectin secreted in the culture medium of adipo-induced human bone marrow-derived MSCs. Oil red O staining was used as a reference method. RESULTS: Adiponectin is detectable after 10 days of induction at a median concentration of 5.13 ng/mL. The secretion of adiponectin steadily increases as adipogenesis proceeds. Adiponectin is undetectable when adipogenic induction is pharmacologically blocked, inefficient or when human MSCs are induced to differentiate toward the osteogenic lineage, proving the specificity of the assay. Furthermore, the results of adiponectin secretion strongly correlate with oil red O quantification at the end of induction treatment. CONCLUSIONS: Our results demonstrate that quantification of secreted adiponectin can be used as a reliable and robust method to evaluate adipogenic potential without destroying samples. This method provides a useful tool for quality control in the laboratory and in clinical applications of human MSCs.


Asunto(s)
Adipogénesis/genética , Adiponectina/metabolismo , Diferenciación Celular/genética , Células Madre Mesenquimatosas/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Adiponectina/genética , Línea Celular , Linaje de la Célula/genética , Humanos , Técnicas In Vitro
11.
J Mater Sci Mater Med ; 25(10): 2395-410, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24863020

RESUMEN

The analysis of cell confluence and proliferation is essential to design biomaterials and scaffolds to use as bone substitutes in clinical applications. Accordingly, several approaches have been proposed in the literature to estimate the area of the scaffold covered by cells. Nevertheless, most of the approaches rely on sophisticated equipment not employed for routine analyses, while the rest of them usually do not provide significant statistics about the cell distribution. This research aims at studying confluence and proliferation of mesenchymal stromal cells (MSC) adherent on OSPROLIFE(®), a commercial biomaterial in the form of granules. In particular, we propose a Computer Vision approach that can routinely be employed to monitor the surface of the single granules covered by cells because only a standard widefield fluorescent microscope is required. In order to acquire significant statistics data, we analyse wide-area images built by using MicroMos v2.0, an updated version of a previously published software specific for stitching brightfield and phase-contrast images manually acquired via a widefield microscope. In particular, MicroMos v2.0 permits to build accurate "mosaics" of fluorescent images, after correcting vignetting and photo-bleaching effects, providing a consistent representation of a sample region containing numerous granules. Then, our method allows to make automatically a statistically significant estimate of the percentage of the area of the single granules covered by cells. Finally, by analysing hundreds of granules at different time intervals we also obtained reliable data regarding cell proliferation, confirming that not only MSC adhere onto the OSPROLIFE(®) granules, but even proliferate over time.


Asunto(s)
Fosfatos de Calcio/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Sustitutos de Huesos/química , Adhesión Celular , Comunicación Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Procesamiento de Imagen Asistido por Computador , Células Madre Mesenquimatosas/ultraestructura , Microscopía Fluorescente/métodos , Tamaño de la Partícula , Propiedades de Superficie , Andamios del Tejido/química
12.
Front Cell Dev Biol ; 12: 1353154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516128

RESUMEN

Tissue-engineered implants for bone regeneration require consideration regarding their mineralization and vascularization capacity. Different geometries, such as biomimetic designs and lattices, can influence the mechanical properties and the vascularization capacity of bone-mimicking implants. Negative Embodied Sacrificial Template 3D (NEST3D) printing is a versatile technique across a wide range of materials that enables the production of bone-mimicking scaffolds. In this study, different scaffold motifs (logpile, Voronoi, and trabecular bone) were fabricated via NEST3D printing in polycaprolactone to determine the effect of geometrical design on stiffness (10.44 ± 6.71, 12.61 ± 5.71, and 25.93 ± 4.16 MPa, respectively) and vascularization. The same designs, in a polycaprolactone scaffold only, or when combined with gelatin methacryloyl, were then assessed for their ability to allow the infiltration of blood vessels in a chick chorioallantoic membrane (CAM) assay, a cost-effective and time-efficient in ovo assay to assess vascularization. Our findings showed that gelatin methacrylolyl alone did not allow new chorioallantoic membrane tissue or blood vessels to infiltrate within its structure. However, polycaprolactone on its own or when combined with gelatin methacrylolyl allowed tissue and vessel infiltration in all scaffold designs. The trabecular bone design showed the greatest mineralized matrix production over the three designs tested. This reinforces our hypothesis that both biomaterial choice and scaffold motifs are crucial components for a bone-mimicking scaffold.

13.
Cancers (Basel) ; 15(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958307

RESUMEN

Myxofibrosarcoma (MFS) is a malignant soft tissue sarcoma (STS) that originates in the body's connective tissues. It is characterized by the presence of myxoid (gel-like) and fibrous components and typically affects patients after the fifth decade of life. Considering the ongoing trend of increasing lifespans across many nations, MFS is likely to become the most common musculoskeletal sarcoma in the future. Although MFS patients have a lower risk of developing distant metastases compared with other STS cases, MFS is characterized by a high frequency of local recurrence. Notably, in 40-60% of the patients where the tumor recurs, it does so multiple times. Consequently, patients may undergo multiple local surgeries, removing the risk of potential amputation. Furthermore, because the tumor relapses generally have a higher grade, they exhibit a decreased response to radio and chemotherapy and an increased tendency to form metastases. Thus, a better understanding of MFS is required, and improved therapeutic options must be developed. Historically, preclinical models for other types of tumors have been instrumental in obtaining a better understanding of tumor development and in testing new therapeutic approaches. However, few MFS models are currently available. In this review, we will describe the MFS models available and will provide insights into the advantages and constraints of each model.

14.
Biochim Biophys Acta ; 1812(7): 711-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21419220

RESUMEN

Mandibuloacral dysplasia type A (MADA) is a rare disease caused by mutations in the LMNA gene encoding A type lamins. Patients affected by mandibuloacral dysplasia type A suffer from partial lipodystrophy, skin abnormalities and accelerated aging. Typical of mandibuloacral dysplasia type A is also bone resorption at defined districts including terminal phalanges, mandible and clavicles. Little is known about the biological mechanism underlying osteolysis in mandibuloacral dysplasia type A. In the reported study, we analyzed an osteoblast primary culture derived from the cervical vertebrae of a mandibuloacral dysplasia type A patient bearing the homozygous R527H LMNA mutation. Mandibuloacral dysplasia type A osteoblasts showed nuclear abnormalities typical of laminopathic cells, but they proliferated in culture and underwent differentiation upon stimulation with dexamethasone and beta-glycerophosphate. Differentiated osteoblasts showed proper production of bone mineral matrix until passage 8 in culture, suggesting a good differentiation activity. In order to evaluate whether mandibuloacral dysplasia type A osteoblast-derived factors affected osteoclast differentiation or activity, we used a conditioned medium from mandibuloacral dysplasia type A or control cultures to treat normal human peripheral blood monocytes and investigated whether they were induced to differentiate into osteoclasts. A higher osteoclast differentiation and matrix digestion rate was obtained in the presence of mandibuloacral dysplasia type A osteoblast medium with respect to normal osteoblast medium. Further, TGFbeta 2 and osteoprotegerin expression were enhanced in mandibuloacral dysplasia type A osteoblasts while the RANKL/osteoprotegerin ratio was diminished. Importantly, inhibition of TGFbeta 2 by a neutralizing antibody abolished the effect of mandibuloacral dysplasia type A conditioned medium on osteoclast differentiation. These data argue in favor of an altered bone turnover in mandibuloacral dysplasia type A, caused by upregulation of bone-derived stimulatory cytokines, which activate non-canonical differentiation stimuli. In this context, TGFbeta 2 appears as a major player in the osteolytic process that affects mandibuloacral dysplasia type A patients.


Asunto(s)
Acroosteólisis/patología , Diferenciación Celular , Osteoblastos/patología , Osteoclastos/patología , Acroosteólisis/sangre , Fosfatasa Alcalina/metabolismo , Secuencia de Bases , Western Blotting , Células Cultivadas , Cartilla de ADN , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Humanos , Microscopía Electrónica
15.
Cytotherapy ; 14(6): 686-93, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22574721

RESUMEN

BACKGROUND AIMS: Bone marrow (BM) mesenchymal stromal cells (MSC) have been identified as a source of pluripotent stem cells used in clinical practice to regenerate damaged tissues. BM MSC are commonly isolated from BM by density-gradient centrifugation. This process is an open system that increases the risk of sample contamination. It is also time consuming and requires technical expertise that may result in variability regarding cellular recovery. The BD Vacutainer® Cell Preparation Tube™ (CPT) was conceived to separate mononuclear cells from peripheral blood. The main goal of this study was to verify whether MSC could be isolated from BM using the CPT. METHODS: BM was harvested, divided into two equal aliquots and processed using either CPT or a Ficoll-Paque™ PREMIUM density gradient. Both methods were compared regarding cell recovery, viability, proliferation, differentiation capacities and the presence of MSC progenitors. RESULTS: Similar numbers of mononuclear cells were isolated from BM when comparing the two methods under study. No differences were found in terms of phenotypic characterization, viability, kinetics and lineage differentiation potential of MSC derived by CPT or Ficoll. Surprisingly, a fibroblast-colony-forming unit (CFU-F) assay indicated that, with CPT, the number of MSC progenitors was 1.8 times higher compared with the Ficoll gradient separation. CONCLUSIONS: The CPT method is able to isolate MSC efficiently from BM, allowing the enrichment of MSC precursors.


Asunto(s)
Células de la Médula Ósea/citología , Separación Celular/métodos , Células Madre Mesenquimatosas/citología , Adipogénesis , Adolescente , Adulto , Recuento de Células , Supervivencia Celular , Niño , Ensayo de Unidades Formadoras de Colonias , Humanos , Cinética , Persona de Mediana Edad , Osteogénesis , Adulto Joven
16.
Oncol Res Treat ; 45(6): 326-335, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35034028

RESUMEN

BACKGROUND: Bone tumors are not a frequent occurrence and bone infarct-associated sarcomas are even rarer. The prognosis of patients experiencing this disease is poor and treatment for them remains a challenge. Nevertheless, hardly any analyses in literature report on secondary osteosarcoma (SO) on bone infarct and most of the data available do not provide sufficient details. We evaluated whether this condition could be further characterized and if prognosis could be influenced by the chemotherapy (ChT) treatment. We sought to determine: (1) the main features of this rare disease; (2) the overall survival (OS) rate; (3) the OS rate associated to ChT treatment; and (4) the correspondence between our results and published data in terms of survival. METHODS: We retrospectively reviewed patients admitted at the Rizzoli Orthopedic Institute of Bologna between 1992 and 2018 (1,465 total cases of osteosarcoma). We identified a list of 11 cases of SO on bone infarct (cohort 1). We conferred about the epidemiology, surgical and ChT treatment, and surveillance of infarct-associated osteosarcoma showing the correlation to data present in literature, corresponding to 14 case reports published within 1962-2018 (cohort 2). RESULTS: (1) Cohort 1 was made of 11 patients: six females and five males, median age was 55 years. Nine (81%) were grade 4 and two (19%) were grade 3. Tumor predominantly arose on distal femur (64%). Most of patients had localized osteosarcoma at the diagnosis (81%); resection surgery was the elective treatment (73%) followed by amputation (18%). Of 11 patients, seven received also ChT (64%). (2) Five-year OS was 62% (95% confidence interval [CI]: 28-84). Median OS was 74 months (95% CI: 12-not reached). The cumulative incidence of cancer-related deaths (CICRD) was 37.7% (95% CI: 11.4-64.5) at 120 months. (3) In the group treated with only surgery, OS was 50% at 5 years. For patients treated with any form of ChT, OS was 71% at 5 years (p = 0.4773) and hazard ratio (HR) 0.56. The CICRD was 29% (at 2 years of follow-up. Instead, it was of 50% for patients treated only with surgery. (4) Median survival was 74 months and 12 months for cohort 1 and cohort 2, respectively (p = 0.0247). Data analysis showed a decreased HR for cohort 1 compared to cohort 2 (HR 0.315). Results confirmed also stratifying for age and ChT administration (HR 0.333). CONCLUSIONS: Based on this work, our opinion is that the treatment of SO patients with ChT combined to surgery improves patients' survival.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/terapia , Femenino , Humanos , Infarto , Masculino , Persona de Mediana Edad , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/terapia , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia
17.
Ther Adv Med Oncol ; 14: 17588359221093973, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782752

RESUMEN

Myxofibrosarcoma (MFS) is a common entity of adult soft tissue sarcomas (STS) characterized by a predilection of the extremities and a high local recurrence rate. Originally classified as a myxoid variant of malignant fibrous histiocytoma, this musculoskeletal tumor has been recognized since 2002 as a distinct histotype showing a spectrum of malignant fibroblastic lesions with myxoid stroma, pleomorphism and curvilinear vessels. Currently, the molecular pathogenesis of MFS is still poorly understood and its genomic profile exhibits a complex karyotype with a number of aberrations including amplifications, deletions and loss of function. The diagnosis is challenging due to the unavailability of specific immunohistochemical markers and is based on the analysis of cytomorphologic features. The mainstay of treatment for localized disease is represented by surgical resection, with (neo)-adjuvant radio- and chemotherapy. In the metastatic setting, chemotherapy represents the backbone of treatments, however its role is still controversial and the outcome is very poor. Recent advent of genomic profiling, targeted therapies and larger enrollment of patients in translational and clinical studies, have improved the understanding of biological behavior and clinical outcome of such a disease. This review will provide an overview of current diagnostic pitfalls and clinical management of MFS. Finally, a look at future directions will be discussed.

18.
Pharmaceutics ; 14(3)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35336051

RESUMEN

Osteosarcoma treatment is moving towards more effective combination therapies. Nevertheless, these approaches present distinctive challenges that can complicate the clinical translation, such as increased toxicity and multi-drug resistance. Drug co-encapsulation within a nanoparticle formulation can overcome these challenges and improve the therapeutic index. We previously synthetized keratin nanoparticles functionalized with Chlorin-e6 (Ce6) and paclitaxel (PTX) to combine photo (PDT) and chemotherapy (PTX) regimens, and the inhibition of osteosarcoma cells growth in vitro was demonstrated. In the current study, we generated an orthotopic osteosarcoma murine model for the preclinical evaluation of our combination therapy. To achieve maximum reproducibility, we systematically established key parameters, such as the number of cells to generate the tumor, the nanoparticles dose, the design of the light-delivery device, the treatment schedule, and the irradiation settings. A 60% engrafting rate was obtained using 10 million OS cells inoculated intratibial, with the tumor model recapitulating the histological hallmarks of the human counterpart. By scheduling the treatment as two cycles of injections, a 32% tumor reduction was obtained with PTX mono-therapy and a 78% reduction with the combined PTX-PDT therapy. Our findings provide the in vivo proof of concept for the subsequent clinical development of a combination therapy to fight osteosarcoma.

19.
Front Bioeng Biotechnol ; 10: 953555, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324885

RESUMEN

In the field of nanomedicine a multitude of nanovectors have been developed for cancer application. In this regard, a less exploited target is represented by connective tissue. Sarcoma lesions encompass a wide range of rare entities of mesenchymal origin affecting connective tissues. The extraordinary diversity and rarity of these mesenchymal tumors is reflected in their classification, grading and management which are still challenging. Although they include more than 70 histologic subtypes, the first line-treatment for advanced and metastatic sarcoma has remained unchanged in the last fifty years, excluding specific histotypes in which targeted therapy has emerged. The role of chemotherapy has not been completely elucidated and the outcomes are still very limited. At the beginning of the century, nano-sized particles clinically approved for other solid lesions were tested in these neoplasms but the results were anecdotal and the clinical benefit was not substantial. Recently, a new nanosystem formulation NBTXR3 for the treatment of sarcoma has landed in a phase 2-3 trial. The preliminary results are encouraging and could open new avenues for research in nanotechnology. This review provides an update on the recent advancements in the field of nanomedicine for sarcoma. In this regard, preclinical evidence especially focusing on the development of smart materials and drug delivery systems will be summarized. Moreover, the sarcoma patient management exploiting nanotechnology products will be summed up. Finally, an overlook on future perspectives will be provided.

20.
J Cell Biochem ; 112(5): 1418-30, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21321995

RESUMEN

With the continuous discovery of new alternative sources containing mesenchymal stem cells (MSCs), regenerative medicine therapies may find tailored applications in the clinics. Although these cells have been demonstrated to express specific mesenchymal markers and are able to differentiate into mesenchymal lineages in ad hoc culture conditions, it is still critical to determine the yield and differentiation potential of these cells in comparative studies under the same standardized culture environment. Moreover, the opportunity to use MSCs from bone marrow (BM) of multiorgan donors for cell banking is of relevant importance. In the attempt to establish the relative potential of alternative MSCs sources, we analyzed and compared the yield and differentiation potential of human MSCs from adipose and BM tissues of cadaveric origins, and from fetal annexes (placenta and umbilical cord) after delivery using standardized isolation and culture protocols. BM contained a significantly higher amount of mononuclear cells (MNCs) compared to the other tissue sources. Nonetheless, a higher cell seeding density was needed for these cells to successfully isolate MSCs. The MNCs populations were highly heterogeneous and expressed variable MSCs markers with a large variation from donor to donor. After MSCs selection through tissue culture plastic adhesion, cells displayed a comparable proliferation capacity with distinct colony morphologies and were positive for a pool of typical MSCs markers. In vitro differentiation assays showed a higher osteogenic differentiation capacity of adipose tissue and BM MSCs, and a higher chondrogenic differentiation capacity of BM MSCs.


Asunto(s)
Bancos de Muestras Biológicas , Células Madre Mesenquimatosas/citología , Enfermedades Musculoesqueléticas/terapia , Medicina Regenerativa , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Cadáver , Diferenciación Celular , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA