Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38152862

RESUMEN

The strategic location of North Africa has made the region the core of a wide range of human demographic events, including migrations, bottlenecks, and admixture processes. This has led to a complex and heterogeneous genetic and cultural landscape, which remains poorly studied compared to other world regions. Whole-exome sequencing is particularly relevant to determine the effects of these demographic events on current-day North Africans' genomes, since it allows to focus on those parts of the genome that are more likely to have direct biomedical consequences. Whole-exome sequencing can also be used to assess the effect of recent demography in functional genetic variation and the efficacy of natural selection, a long-lasting debate. In the present work, we use newly generated whole-exome sequencing and genome-wide array genotypes to investigate the effect of demography in functional variation in 7 North African populations, considering both cultural and demographic differences and with a special focus on Amazigh (plur. Imazighen) groups. We detect genetic differences among populations related to their degree of isolation and the presence of bottlenecks in their recent history. We find differences in the functional part of the genome that suggest a relaxation of purifying selection in the more isolated groups, allowing for an increase of putatively damaging variation. Our results also show a shift in mutational load coinciding with major demographic events in the region and reveal differences within and between cultural and geographic groups.


Asunto(s)
Variación Genética , Genética de Población , Humanos , Pueblo Norteafricano , Genoma , Demografía
2.
Hum Mol Genet ; 30(R1): R17-R23, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33284971

RESUMEN

Compared with the rest of the African continent, North Africa has provided limited genomic data. Nonetheless, the genetic data available show a complex demographic scenario characterized by extensive admixture and drift. Despite the continuous gene flow from the Middle East, Europe and sub-Saharan Africa, an autochthonous genetic component that dates back to pre-Holocene times is still present in North African groups. The comparison of ancient and modern genomes has evidenced a genetic continuity in the region since Epipaleolithic times. Later population movements, especially the gene flow from the Middle East associated with the Neolithic, have diluted the genetic autochthonous component, creating an east to west gradient. Recent historical movements, such as the Arabization, have also contributed to the genetic landscape observed currently in North Africa and have culturally transformed the region. Genome analyses have not shown evidence of a clear correlation between cultural and genetic diversity in North Africa, as there is no genetic pattern of differentiation between Tamazight (i.e. Berber) and Arab speakers as a whole. Besides the gene flow received from neighboring areas, the analysis of North African genomes has shown that the region has also acted as a source of gene flow since ancient times. As a result of the genetic uniqueness of North African groups and the lack of available data, there is an urgent need for the study of genetic variation in the region and its implications in health and disease.


Asunto(s)
Árabes/genética , ADN/historia , Genética de Población/métodos , Pueblos Indígenas/genética , África del Norte/etnología , Flujo Génico , Historia Antigua , Humanos , Medio Oriente , Filogeografía
3.
Hum Genet ; 142(2): 305-320, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36441222

RESUMEN

The Sahara Desert has acted as a barrier to human gene-flow between the northern and central parts of Africa since its aridification. Nonetheless, some contacts between both sides of the desert have occurred throughout history, mainly driven by commercial activity. Part of this was the infamous trans-Saharan slave trade, which forcedly brought peoples from south of the Sahara to North Africa from Roman times until the nineteenth century. Although historical records exist, the genetic aspects of these trans-Saharan migrations have not been deeply studied. In the present study, we assess the genetic influence of trans-Saharan migrations in current-day North Africa and characterize its amount, geographical origin, and dates. We confirm the heterogeneous and generally low-frequency presence of genomic segments of sub-Saharan origin in present-day North Africans acquired in recent historical times, and we show evidence of at least two admixture events: one dated around the thirteenth-fourteenth centuries CE between North Africans and a Western-sub-Saharan-like source similar to current-day Senegambian populations, and another one dated around the seventeenth century CE involving Tunisians and an Eastern-sub-Saharan-like source related to current-day south-Sudan and Kenyan populations. Time and location coincide with the peak of trans-Saharan slave-trade activity between Western African empires and North African powers, and are also concordant with the possibility of continuous recent south-to-north gene-flow. These findings confirm the trans-Saharan human genetic contacts, providing new and precise evidence about its possible dates and geographical origins, which are pivotal to understanding the genomic composition of an underrepresented region such as North Africa.


Asunto(s)
Genética de Población , Pueblo Norteafricano , Humanos , Kenia , África del Norte , Genómica , Variación Genética
4.
Mol Biol Evol ; 38(7): 2804-2817, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33713133

RESUMEN

Demographic history plays a major role in shaping the distribution of genomic variation. Yet the interaction between different demographic forces and their effects in the genomes is not fully resolved in human populations. Here, we focus on the Roma population, the largest transnational ethnic minority in Europe. They have a South Asian origin and their demographic history is characterized by recent dispersals, multiple founder events, and extensive gene flow from non-Roma groups. Through the analyses of new high-coverage whole exome sequences and genome-wide array data for 89 Iberian Roma individuals together with forward simulations, we show that founder effects have reduced their genetic diversity and proportion of rare variants, gene flow has counteracted the increase in mutational load, runs of homozygosity show ancestry-specific patterns of accumulation of deleterious homozygotes, and selection signals primarily derive from preadmixture adaptation in the Roma population sources. The present study shows how two demographic forces, bottlenecks and admixture, act in opposite directions and have long-term balancing effects on the Roma genomes. Understanding how demography and gene flow shape the genome of an admixed population provides an opportunity to elucidate how genomic variation is modeled in human populations.


Asunto(s)
Demografía , Efecto Fundador , Variación Genética , Genoma Humano , Romaní/genética , Adaptación Biológica , Humanos , Acumulación de Mutaciones , Selección Genética
5.
Sci Rep ; 14(1): 9979, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693301

RESUMEN

The strategic location of North Africa has led to cultural and demographic shifts, shaping its genetic structure. Historical migrations brought different genetic components that are evident in present-day North African genomes, along with autochthonous components. The Imazighen (plural of Amazigh) are believed to be the descendants of autochthonous North Africans and speak various Amazigh languages, which belong to the Afro-Asiatic language family. However, the arrival of different human groups, especially during the Arab conquest, caused cultural and linguistic changes in local populations, increasing their heterogeneity. We aim to characterize the genetic structure of the region, using the largest Amazigh dataset to date and other reference samples. Our findings indicate microgeographical genetic heterogeneity among Amazigh populations, modeled by various admixture waves and different effective population sizes. A first admixture wave is detected group-wide around the twelfth century, whereas a second wave appears in some Amazigh groups around the nineteenth century. These events involved populations with higher genetic ancestry from south of the Sahara compared to the current North Africans. A plausible explanation would be the historical trans-Saharan slave trade, which lasted from the Roman times to the nineteenth century. Furthermore, our investigation shows that assortative mating in North Africa has been rare.


Asunto(s)
Heterogeneidad Genética , Genética de Población , Migración Humana , Personas de Africa del Norte y Medio Oriente , Humanos , África del Norte , Población Negra/genética , Genoma Humano , Genómica/métodos , Migración Humana/historia , Pueblo Norteafricano/genética , Árabes/genética , África del Sur del Sahara/etnología , Personas de Africa del Norte y Medio Oriente/genética
6.
Sci Rep ; 13(1): 8166, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210386

RESUMEN

Because of its location, North Africa (NA) has witnessed continuous demographic movements with an impact on the genomes of present-day human populations. Genomic data describe a complex scenario with varying proportions of at least four main ancestry components: Maghrebi, Middle Eastern-, European-, and West-and-East-African-like. However, the footprint of positive selection in NA has not been studied. Here, we compile genome-wide genotyping data from 190 North Africans and individuals from surrounding populations, investigate for signatures of positive selection using allele frequencies and linkage disequilibrium-based methods and infer ancestry proportions to discern adaptive admixture from post-admixture selection events. Our results show private candidate genes for selection in NA involved in insulin processing (KIF5A), immune function (KIF5A, IL1RN, TLR3), and haemoglobin phenotypes (BCL11A). We also detect signatures of positive selection related to skin pigmentation (SLC24A5, KITLG), and immunity function (IL1R1, CD44, JAK1) shared with European populations and candidate genes associated with haemoglobin phenotypes (HPSE2, HBE1, HBG2), other immune-related (DOCK2) traits, and insulin processing (GLIS3) traits shared with West and East African populations. Finally, the SLC8A1 gene, which codifies for a sodium-calcium exchanger, was the only candidate identified under post-admixture selection in Western NA.


Asunto(s)
Genética de Población , Insulinas , Humanos , África del Norte , Frecuencia de los Genes , Insulinas/metabolismo , Polimorfismo de Nucleótido Simple , Selección Genética
7.
Sci Rep ; 11(1): 21125, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702931

RESUMEN

Human populations are genetically affected by their demographic history, which shapes the distribution of their functional genomic variation. However, the genetic impact of recent demography is debated. This issue has been studied in different populations, but never in North Africans, despite their relevant cultural and demographic diversity. In this study we address the question by analyzing new whole-exome sequences from two culturally different Tunisian populations, an isolated Amazigh population and a close non-isolated Arab-speaking population, focusing on the distribution of functional variation. Both populations present clear differences in their variant frequency distribution, in general and for putatively damaging variation. This suggests a relevant effect in the Amazigh population of genetic isolation, drift, and inbreeding, pointing to relaxed purifying selection. We also discover the enrichment in Imazighen of variation associated to specific diseases or phenotypic traits, but the scarce genetic and biomedical data in the region limits further interpretation. Our results show the genomic impact of recent demography and reveal a clear genetic differentiation probably related to culture. These findings highlight the importance of considering cultural and demographic heterogeneity within North Africa when defining population groups, and the need for more data to improve knowledge on the region's health and disease landscape.


Asunto(s)
Árabes/genética , Secuenciación del Exoma , Exoma , Femenino , Humanos , Masculino , Túnez/etnología
8.
Curr Biol ; 29(22): 3953-3959.e4, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31679935

RESUMEN

North Africa is located at the crossroads of the Mediterranean Sea, the Middle East, and the Sahara Desert. Extensive migrations and gene flow in the region have shaped many different cultures and ancestral genetic components through time [1-6]. DNA data from ancient Moroccan sites [7, 8] has recently shed some light to the population continuity-versus-replacement debate, i.e., the question of whether current North African populations descend from Palaeolithic groups or, on the contrary, subsequent migrations swept away all pre-existing genetic signal in the region. In the present study, we analyze 21 complete North African genomes and compare them with extant and ancient genome data in order to address the demographic continuity-versus-replacement debate, to assess whether these demographic events were homogeneous (including Berber and Arabic-speaking groups), and to explore the effect of Neolithization and posterior migration waves. The North African genetic pool is defined as a melting pot of genetic components, including an endemic North African Epipalaeolithic component at low frequency that forms a declining gradient from Western to Eastern North Africa. This scenario is consistent with Neolithization having shaped most of the current genetic variation in the region when compared to posterior back-to-North-Africa migration waves such as the Arabization. A common and distinct genetic history of the region is shown, with internal different proportions of genetic components owing to differential admixture with surrounding groups as well as to genetic drift due to isolation and endogamy in certain populations.


Asunto(s)
Población Negra/genética , Flujo Génico/genética , África del Sur del Sahara , África del Norte , Fósiles , Pool de Genes , Variación Genética , Genética de Población/métodos , Genoma/genética , Haplotipos , Historia Antigua , Migración Humana/historia , Humanos , Polimorfismo de Nucleótido Simple , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA