Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.253
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(7): 1785-1800.e16, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552614

RESUMEN

To understand biological processes, it is necessary to reveal the molecular heterogeneity of cells by gaining access to the location and interaction of all biomolecules. Significant advances were achieved by super-resolution microscopy, but such methods are still far from reaching the multiplexing capacity of proteomics. Here, we introduce secondary label-based unlimited multiplexed DNA-PAINT (SUM-PAINT), a high-throughput imaging method that is capable of achieving virtually unlimited multiplexing at better than 15 nm resolution. Using SUM-PAINT, we generated 30-plex single-molecule resolved datasets in neurons and adapted omics-inspired analysis for data exploration. This allowed us to reveal the complexity of synaptic heterogeneity, leading to the discovery of a distinct synapse type. We not only provide a resource for researchers, but also an integrated acquisition and analysis workflow for comprehensive spatial proteomics at single-protein resolution.


Asunto(s)
Proteómica , Imagen Individual de Molécula , ADN , Microscopía Fluorescente/métodos , Neuronas , Proteínas
2.
Cell ; 176(4): 679-681, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30735629

RESUMEN

New possibilities for vector-borne disease control are revealed by Duvall et al. (2019), who link host-seeking behavioral modulation in Aedes aegypti to neuropeptide Y (NPY)-like receptor 7. Small-molecule screening yields agonist compounds able to activate NPYLR7 and suppress attraction to hosts.


Asunto(s)
Aedes , Mordeduras y Picaduras de Insectos , Animales , Mosquitos Vectores , Receptores de Neuropéptido Y
3.
Cell ; 177(4): 1067-1079.e19, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051099

RESUMEN

The precise control of CRISPR-Cas9 activity is required for a number of genome engineering technologies. Here, we report a generalizable platform that provided the first synthetic small-molecule inhibitors of Streptococcus pyogenes Cas9 (SpCas9) that weigh <500 Da and are cell permeable, reversible, and stable under physiological conditions. We developed a suite of high-throughput assays for SpCas9 functions, including a primary screening assay for SpCas9 binding to the protospacer adjacent motif, and used these assays to screen a structurally diverse collection of natural-product-like small molecules to ultimately identify compounds that disrupt the SpCas9-DNA interaction. Using these synthetic anti-CRISPR small molecules, we demonstrated dose and temporal control of SpCas9 and catalytically impaired SpCas9 technologies, including transcription activation, and identified a pharmacophore for SpCas9 inhibition using structure-activity relationships. These studies establish a platform for rapidly identifying synthetic, miniature, cell-permeable, and reversible inhibitors against both SpCas9 and next-generation CRISPR-associated nucleases.


Asunto(s)
Proteína 9 Asociada a CRISPR/antagonistas & inhibidores , Sistemas CRISPR-Cas/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , ADN/metabolismo , Endonucleasas/metabolismo , Edición Génica/métodos , Genoma , Bibliotecas de Moléculas Pequeñas , Streptococcus pyogenes/genética , Especificidad por Sustrato
4.
Cell ; 174(4): 772-774, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096306

RESUMEN

Viruses have evolved inhibitors to counteract the CRISPR immune response, but they are not fully potent and need some time to be expressed after the beginning of infection. In this issue of Cell, Borges et al. and Landsberger et al. show that sequential infection gradually immunosuppresses the host to allow effective CRISPR inhibition.


Asunto(s)
Bacteriófagos/genética , Virus/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
5.
Cell ; 164(4): 710-21, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26853474

RESUMEN

Type III-A CRISPR-Cas systems defend prokaryotes against viral infection using CRISPR RNA (crRNA)-guided nucleases that perform co-transcriptional cleavage of the viral target DNA and its transcripts. Whereas DNA cleavage is essential for immunity, the function of RNA targeting is unknown. Here, we show that transcription-dependent targeting results in a sharp increase of viral genomes in the host cell when the target is located in a late-expressed phage gene. In this targeting condition, mutations in the active sites of the type III-A RNases Csm3 and Csm6 lead to the accumulation of the target phage mRNA and abrogate immunity. Csm6 is also required to provide defense in the presence of mutated phage targets, when DNA cleavage efficiency is reduced. Our results show that the degradation of phage transcripts by CRISPR-associated RNases ensures robust immunity in situations that lead to a slow clearance of the target DNA.


Asunto(s)
Sistemas CRISPR-Cas , Estabilidad del ARN , Fagos de Staphylococcus/genética , Staphylococcus epidermidis/inmunología , Proteínas Bacterianas , ADN Viral/genética , ARN Viral/metabolismo , Fagos de Staphylococcus/fisiología , Staphylococcus epidermidis/virología , Transcripción Genética
6.
Cell ; 161(5): 1164-1174, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25959775

RESUMEN

Immune systems must recognize and destroy different pathogens that threaten the host. CRISPR-Cas immune systems protect prokaryotes from viral and plasmid infection utilizing small CRISPR RNAs that are complementary to the invader's genome and specify the targets of RNA-guided Cas nucleases. Type III CRISPR-Cas immunity requires target transcription, and whereas genetic studies demonstrated DNA targeting, in vitro data have shown crRNA-guided RNA cleavage. The molecular mechanism behind these disparate activities is not known. Here, we show that transcription across the targets of the Staphylococcus epidermidis type III-A CRISPR-Cas system results in the cleavage of the target DNA and its transcripts, mediated by independent active sites within the Cas10-Csm ribonucleoprotein effector complex. Immunity against plasmids and DNA viruses requires DNA, but not RNA, cleavage activity. Our studies reveal a highly versatile mechanism of CRISPR immunity that can defend microorganisms against diverse DNA and RNA invaders.


Asunto(s)
Sistemas CRISPR-Cas , Staphylococcus epidermidis/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , ADN/metabolismo , ARN/genética , ARN/metabolismo , Ribonucleoproteínas/metabolismo , Staphylococcus epidermidis/inmunología , Staphylococcus epidermidis/virología , Transcripción Genética
7.
Nature ; 625(7996): 797-804, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200316

RESUMEN

Prokaryotic type III CRISPR-Cas systems provide immunity against viruses and plasmids using CRISPR-associated Rossman fold (CARF) protein effectors1-5. Recognition of transcripts of these invaders with sequences that are complementary to CRISPR RNA guides leads to the production of cyclic oligoadenylate second messengers, which bind CARF domains and trigger the activity of an effector domain6,7. Whereas most effectors degrade host and invader nucleic acids, some are predicted to contain transmembrane helices without an enzymatic function. Whether and how these CARF-transmembrane helix fusion proteins facilitate the type III CRISPR-Cas immune response remains unknown. Here we investigate the role of cyclic oligoadenylate-activated membrane protein 1 (Cam1) during type III CRISPR immunity. Structural and biochemical analyses reveal that the CARF domains of a Cam1 dimer bind cyclic tetra-adenylate second messengers. In vivo, Cam1 localizes to the membrane, is predicted to form a tetrameric transmembrane pore, and provides defence against viral infection through the induction of membrane depolarization and growth arrest. These results reveal that CRISPR immunity does not always operate through the degradation of nucleic acids, but is instead mediated via a wider range of cellular responses.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Potenciales de la Membrana , Staphylococcus aureus , Bacteriófagos/inmunología , Bacteriófagos/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Nucleótidos Cíclicos/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Sistemas de Mensajero Secundario , Staphylococcus aureus/citología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Staphylococcus aureus/virología
8.
Nature ; 629(8011): 410-416, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632404

RESUMEN

Bacteria have adapted to phage predation by evolving a vast assortment of defence systems1. Although anti-phage immunity genes can be identified using bioinformatic tools, the discovery of novel systems is restricted to the available prokaryotic sequence data2. Here, to overcome this limitation, we infected Escherichia coli carrying a soil metagenomic DNA library3 with the lytic coliphage T4 to isolate clones carrying protective genes. Following this approach, we identified Brig1, a DNA glycosylase that excises α-glucosyl-hydroxymethylcytosine nucleobases from the bacteriophage T4 genome to generate abasic sites and inhibit viral replication. Brig1 homologues that provide immunity against T-even phages are present in multiple phage defence loci across distinct clades of bacteria. Our study highlights the benefits of screening unsequenced DNA and reveals prokaryotic DNA glycosylases as important players in the bacteria-phage arms race.


Asunto(s)
Bacterias , Bacteriófago T4 , ADN Glicosilasas , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Bacterias/inmunología , Bacterias/virología , Bacteriófago T4/crecimiento & desarrollo , Bacteriófago T4/inmunología , Bacteriófago T4/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Escherichia coli/genética , Escherichia coli/virología , Biblioteca de Genes , Metagenómica/métodos , Microbiología del Suelo , Replicación Viral
9.
Mol Cell ; 82(21): 3968-3969, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36332604

RESUMEN

Hoffmann et al. (2022) demonstrate that RNA-guided transposons are remarkably sequence specific due to the action of a AAA+ ATPase, TnsC, that recruits the transposase to the correct target site.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Elementos Transponibles de ADN/genética , ADN Bacteriano , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas de Unión al ADN/genética , Transposasas/genética , Transposasas/metabolismo
10.
Mol Cell ; 82(5): 907-919.e7, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35134339

RESUMEN

Prokaryotic organisms have developed multiple defense systems against phages; however, little is known about whether and how these interact with each other. Here, we studied the connection between two of the most prominent prokaryotic immune systems: restriction-modification and CRISPR. While both systems employ enzymes that cleave a specific DNA sequence of the invader, CRISPR nucleases are programmed with phage-derived spacer sequences, which are integrated into the CRISPR locus upon infection. We found that restriction endonucleases provide a short-term defense, which is rapidly overcome through methylation of the phage genome. In a small fraction of the cells, however, restriction results in the acquisition of spacer sequences from the cleavage site, which mediates a robust type II-A CRISPR-Cas immune response against the methylated phage. This mechanism is reminiscent of eukaryotic immunity in which the innate response offers a first temporary line of defense and also activates a second and more robust adaptive response.


Asunto(s)
Bacteriófagos , ADN Viral , Bacteriófagos/metabolismo , Sistemas CRISPR-Cas , Enzimas de Restricción del ADN/genética , ADN Viral/genética , Endonucleasas/genética , Inmunidad
11.
Mol Cell ; 82(22): 4307-4323.e10, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36306796

RESUMEN

Coenzyme Q (CoQ) is a redox-active lipid essential for core metabolic pathways and antioxidant defense. CoQ is synthesized upon the mitochondrial inner membrane by an ill-defined "complex Q" metabolon. Here, we present structure-function analyses of a lipid-, substrate-, and NADH-bound complex comprising two complex Q subunits: the hydroxylase COQ7 and the lipid-binding protein COQ9. We reveal that COQ7 adopts a ferritin-like fold with a hydrophobic channel whose substrate-binding capacity is enhanced by COQ9. Using molecular dynamics, we further show that two COQ7:COQ9 heterodimers form a curved tetramer that deforms the membrane, potentially opening a pathway for the CoQ intermediates to translocate from the bilayer to the proteins' lipid-binding sites. Two such tetramers assemble into a soluble octamer with a pseudo-bilayer of lipids captured within. Together, these observations indicate that COQ7 and COQ9 cooperate to access hydrophobic precursors within the membrane and coordinate subsequent synthesis steps toward producing CoQ.


Asunto(s)
Membranas Mitocondriales , Ubiquinona , Humanos , Ubiquinona/química , Membranas Mitocondriales/metabolismo , Proteínas Portadoras , Lípidos
12.
Nature ; 623(7989): 1001-1008, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968393

RESUMEN

Cyclic oligonucleotide-based antiphage signalling systems (CBASS) protect prokaryotes from viral (phage) attack through the production of cyclic oligonucleotides, which activate effector proteins that trigger the death of the infected host1,2. How bacterial cyclases recognize phage infection is not known. Here we show that staphylococcal phages produce a structured RNA transcribed from the terminase subunit genes, termed CBASS-activating bacteriophage RNA (cabRNA), which binds to a positively charged surface of the CdnE03 cyclase and promotes the synthesis of the cyclic dinucleotide cGAMP to activate the CBASS immune response. Phages that escape the CBASS defence harbour mutations that lead to the generation of a longer form of the cabRNA that cannot activate CdnE03. As the mammalian cyclase OAS1 also binds viral double-stranded RNA during the interferon response, our results reveal a conserved mechanism for the activation of innate antiviral defence pathways.


Asunto(s)
Bacterias , Nucleotidiltransferasas , ARN Viral , Fagos de Staphylococcus , Animales , 2',5'-Oligoadenilato Sintetasa/metabolismo , Bacterias/enzimología , Bacterias/inmunología , Evolución Molecular , Inmunidad Innata , Nucleotidiltransferasas/metabolismo , Oligonucleótidos/inmunología , Oligonucleótidos/metabolismo , ARN Viral/inmunología , ARN Viral/metabolismo , Transducción de Señal/inmunología , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/inmunología
13.
Nature ; 620(7976): 1101-1108, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612504

RESUMEN

Distinct morphologies of the mitochondrial network support divergent metabolic and regulatory processes that determine cell function and fate1-3. The mechanochemical GTPase optic atrophy 1 (OPA1) influences the architecture of cristae and catalyses the fusion of the mitochondrial inner membrane4,5. Despite its fundamental importance, the molecular mechanisms by which OPA1 modulates mitochondrial morphology are unclear. Here, using a combination of cellular and structural analyses, we illuminate the molecular mechanisms that are key to OPA1-dependent membrane remodelling and fusion. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain. A conserved loop within the paddle domain inserts deeply into the bilayer, further stabilizing the interactions with cardiolipin-enriched membranes. OPA1 dimerization through the paddle domain promotes the helical assembly of a flexible OPA1 lattice on the membrane, which drives mitochondrial fusion in cells. Moreover, the membrane-bending OPA1 oligomer undergoes conformational changes that pull the membrane-inserting loop out of the outer leaflet and contribute to the mechanics of membrane remodelling. Our findings provide a structural framework for understanding how human OPA1 shapes mitochondrial morphology and show us how human disease mutations compromise OPA1 functions.


Asunto(s)
GTP Fosfohidrolasas , Fusión de Membrana , Mitocondrias , Membranas Mitocondriales , Humanos , Biocatálisis , Cardiolipinas/química , Cardiolipinas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Mitocondrias/química , Mitocondrias/metabolismo , Membranas Mitocondriales/química , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Mutación , Dominios Proteicos , Multimerización de Proteína , Dinámicas Mitocondriales
14.
Nature ; 617(7962): 711-716, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37225882

RESUMEN

Fluorescence microscopy, with its molecular specificity, is one of the major characterization methods used in the life sciences to understand complex biological systems. Super-resolution approaches1-6 can achieve resolution in cells in the range of 15 to 20 nm, but interactions between individual biomolecules occur at length scales below 10 nm and characterization of intramolecular structure requires Ångström resolution. State-of-the-art super-resolution implementations7-14 have demonstrated spatial resolutions down to 5 nm and localization precisions of 1 nm under certain in vitro conditions. However, such resolutions do not directly translate to experiments in cells, and Ångström resolution has not been demonstrated to date. Here we introdue a DNA-barcoding method, resolution enhancement by sequential imaging (RESI), that improves the resolution of fluorescence microscopy down to the Ångström scale using off-the-shelf fluorescence microscopy hardware and reagents. By sequentially imaging sparse target subsets at moderate spatial resolutions of >15 nm, we demonstrate that single-protein resolution can be achieved for biomolecules in whole intact cells. Furthermore, we experimentally resolve the DNA backbone distance of single bases in DNA origami with Ångström resolution. We use our method in a proof-of-principle demonstration to map the molecular arrangement of the immunotherapy target CD20 in situ in untreated and drug-treated cells, which opens possibilities for assessing the molecular mechanisms of targeted immunotherapy. These observations demonstrate that, by enabling intramolecular imaging under ambient conditions in whole intact cells, RESI closes the gap between super-resolution microscopy and structural biology studies and thus delivers information key to understanding complex biological systems.


Asunto(s)
Antígenos CD20 , Células , ADN , Microscopía Fluorescente , Disciplinas de las Ciencias Biológicas/instrumentación , Disciplinas de las Ciencias Biológicas/métodos , Disciplinas de las Ciencias Biológicas/normas , Inmunoterapia , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Microscopía Fluorescente/normas , Código de Barras del ADN Taxonómico , ADN/análisis , ADN/química , Antígenos CD20/análisis , Antígenos CD20/química , Células/efectos de los fármacos , Células/metabolismo
15.
Annu Rev Genet ; 54: 93-120, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32857635

RESUMEN

Prokaryotes have developed numerous defense strategies to combat the constant threat posed by the diverse genetic parasites that endanger them. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas loci guard their hosts with an adaptive immune system against foreign nucleic acids. Protection starts with an immunization phase, in which short pieces of the invader's genome, known as spacers, are captured and integrated into the CRISPR locus after infection. Next, during the targeting phase, spacers are transcribed into CRISPR RNAs (crRNAs) that guide CRISPR-associated (Cas) nucleases to destroy the invader's DNA or RNA. Here we describe the many different molecular mechanisms of CRISPR targeting and how they are interconnected with the immunization phase through a third phase of the CRISPR-Cas immune response: primed spacer acquisition. In this phase, Cas proteins direct the crRNA-guided acquisition of additional spacers to achieve a more rapid and robust immunization of the population.


Asunto(s)
Bacterias/genética , Sistemas CRISPR-Cas/genética , Inmunidad/genética , Animales , ADN/genética , ARN/genética
16.
Mol Cell ; 78(4): 568-569, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32442502

RESUMEN

Athukoralage et al. (2020) identify a new anti-CRISPR (Acr) that degrades cA4, a cyclic oligo-adenylate second messenger produced during the type III CRISPR immune response. This provides an effective way by which invaders can bypass downstream CRISPR effectors that rely on this signaling molecule.


Asunto(s)
Bacteriófagos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Nucleótidos de Adenina , Sistemas CRISPR-Cas , Oligorribonucleótidos
17.
Nat Methods ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658647

RESUMEN

State-of-the-art super-resolution microscopy allows researchers to spatially resolve single proteins in dense clusters. However, accurate quantification of protein organization and stoichiometries requires a general method to evaluate absolute binder labeling efficiency, which is currently unavailable. Here we introduce a universally applicable approach that uses a reference tag fused to a target protein of interest. By attaching high-affinity binders, such as antibodies or nanobodies, to both the reference tag and the target protein, and then employing DNA-barcoded sequential super-resolution imaging, we can correlate the location of the reference tag with the target molecule binder. This approach facilitates the precise quantification of labeling efficiency at the single-protein level.

18.
Nature ; 590(7847): 624-629, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33461211

RESUMEN

In the type III CRISPR-Cas immune response of prokaryotes, infection triggers the production of cyclic oligoadenylates that bind and activate proteins that contain a CARF domain1,2. Many type III loci are associated with proteins in which the CRISPR-associated Rossman fold (CARF) domain is fused to a restriction  endonuclease-like domain3,4. However, with the exception of the well-characterized Csm6 and Csx1 ribonucleases5,6, whether and how these inducible effectors provide defence is not known. Here we investigated a type III CRISPR accessory protein, which we name cyclic-oligoadenylate-activated single-stranded ribonuclease and single-stranded deoxyribonuclease 1 (Card1). Card1 forms a symmetrical dimer that has a large central cavity between its CRISPR-associated Rossmann fold and restriction endonuclease domains that binds cyclic tetra-adenylate. The binding of ligand results in a conformational change comprising the rotation of individual monomers relative to each other to form a more compact dimeric scaffold, in which a manganese cation coordinates the catalytic residues and activates the cleavage of single-stranded-but not double-stranded-nucleic acids (both DNA and RNA). In vivo, activation of Card1 induces dormancy of the infected hosts to provide immunity against phage infection and plasmids. Our results highlight the diversity of strategies used in CRISPR systems to provide immunity.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Sistemas CRISPR-Cas/inmunología , ADN de Cadena Simple/metabolismo , Desoxirribonucleasas/metabolismo , Endorribonucleasas/metabolismo , Oligorribonucleótidos/metabolismo , ARN/metabolismo , Staphylococcus/enzimología , Staphylococcus/inmunología , Nucleótidos de Adenina/inmunología , Adenosina Trifosfato/metabolismo , Bacteriófagos/inmunología , Bacteriófagos/fisiología , Biocatálisis , Dominio Catalítico , Desoxirribonucleasas/química , Desoxirribonucleasas/genética , Endorribonucleasas/química , Endorribonucleasas/genética , Activación Enzimática , Ligandos , Manganeso/química , Manganeso/metabolismo , Modelos Moleculares , Oligorribonucleótidos/inmunología , Plásmidos/genética , Plásmidos/metabolismo , Multimerización de Proteína , Rotación , Staphylococcus/crecimiento & desarrollo , Staphylococcus/virología , Especificidad por Sustrato
19.
Nature ; 592(7855): 611-615, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33828299

RESUMEN

Horizontal gene transfer and mutation are the two major drivers of microbial evolution that enable bacteria to adapt to fluctuating environmental stressors1. Clustered, regularly interspaced, short palindromic repeats (CRISPR) systems use RNA-guided nucleases to direct sequence-specific destruction of the genomes of mobile genetic elements that mediate horizontal gene transfer, such as conjugative plasmids2 and bacteriophages3, thus limiting the extent to which bacteria can evolve by this mechanism. A subset of CRISPR systems also exhibit non-specific degradation of DNA4,5; however, whether and how this feature affects the host has not yet been examined. Here we show that the non-specific DNase activity of the staphylococcal type III-A CRISPR-Cas system increases mutations in the host and accelerates the generation of antibiotic resistance in Staphylococcus aureus and Staphylococcus epidermidis. These mutations require the induction of the SOS response to DNA damage and display a distinct pattern. Our results demonstrate that by differentially affecting both mechanisms that generate genetic diversity, type III-A CRISPR systems can modulate the evolution of the bacterial host.


Asunto(s)
Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Mutagénesis , Mutación , Staphylococcus/genética , Antibacterianos/farmacología , Bacteriófagos/clasificación , Bacteriófagos/fisiología , Proteínas Asociadas a CRISPR/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Desoxirribonucleasas/metabolismo , Farmacorresistencia Microbiana/efectos de los fármacos , Respuesta SOS en Genética/efectos de los fármacos , Staphylococcus/efectos de los fármacos , Staphylococcus/inmunología , Staphylococcus/virología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/virología , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/virología , Factores de Tiempo
20.
Mol Cell ; 73(2): 264-277.e5, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30503773

RESUMEN

Type ΙΙΙ CRISPR-Cas systems provide robust immunity against foreign RNA and DNA by sequence-specific RNase and target RNA-activated sequence-nonspecific DNase and RNase activities. We report on cryo-EM structures of Thermococcus onnurineus CsmcrRNA binary, CsmcrRNA-target RNA and CsmcrRNA-target RNAanti-tag ternary complexes in the 3.1 Å range. The topological features of the crRNA 5'-repeat tag explains the 5'-ruler mechanism for defining target cleavage sites, with accessibility of positions -2 to -5 within the 5'-repeat serving as sensors for avoidance of autoimmunity. The Csm3 thumb elements introduce periodic kinks in the crRNA-target RNA duplex, facilitating cleavage of the target RNA with 6-nt periodicity. Key Glu residues within a Csm1 loop segment of CsmcrRNA adopt a proposed autoinhibitory conformation suggestive of DNase activity regulation. These structural findings, complemented by mutational studies of key intermolecular contacts, provide insights into CsmcrRNA complex assembly, mechanisms underlying RNA targeting and site-specific periodic cleavage, regulation of DNase cleavage activity, and autoimmunity suppression.


Asunto(s)
Autoinmunidad , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Desoxirribonucleasas/metabolismo , Estabilidad del ARN , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/ultraestructura , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/inmunología , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , Microscopía por Crioelectrón , Desoxirribonucleasas/genética , Desoxirribonucleasas/inmunología , Desoxirribonucleasas/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/inmunología , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Complejos Multiproteicos , Mutación , Conformación de Ácido Nucleico , Conformación Proteica , ARN Bacteriano/genética , ARN Bacteriano/inmunología , ARN Bacteriano/ultraestructura , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Proteínas de Unión al ARN/ultraestructura , Relación Estructura-Actividad , Thermococcus/enzimología , Thermococcus/genética , Thermococcus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA