Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Pathol ; 188(12): 2902-2911, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30248342

RESUMEN

Patient-derived xenografts retain the genotype of the parent tumors more readily than tumor cells maintained in culture. The two previously reported clival chordoma xenografts were derived from recurrent tumors after radiation. To study the genetics of clival chordoma in the absence of prior radiation exposure we established a patient-derived xenograft at primary resection of a clival chordoma. Epicranial grafting of clival chordoma collected during surgery was performed. Tumor growth was established in a nonobese diabetic/severe combined immunodeficiency mouse and tumors have been passaged serially for seven generations. Physaliferous cell architecture was shown in the regenerated tumors, which stained positive for Brachyury, cytokeratin, and S100 protein. The tumors showed bone invasion. Single-nucleotide polymorphism analysis of the tumor xenograft was compared with the parental tumor. Copy number gain of the T gene (brachyury) and heterozygous loss of cyclin dependent kinase inhibitor 2A (CDKN2A) was observed. Heterozygous loss of the tumor-suppressor fragile histidine triad (FHIT) gene also was observed, although protein expression was preserved. Accumulation of copy number losses and gains as well as increased growth rate was observed over three generations. The patient-derived xenograft reproduces the phenotype of clival chordoma. This model can be used in the future to study chordoma biology and to assess novel treatments.


Asunto(s)
Biomarcadores de Tumor/genética , Cordoma/genética , Inestabilidad Genómica , Polimorfismo de Nucleótido Simple , Neoplasias de la Base del Cráneo/genética , Anciano , Animales , Apoptosis , Proliferación Celular , Cordoma/patología , Perfilación de la Expresión Génica , Genoma Humano , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias de la Base del Cráneo/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Nanomedicine ; 14(4): 1137-1148, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29471172

RESUMEN

Glioblastoma (GBM) is the most common and aggressive primary brain tumor resulting in high rates of morbidity and mortality. A strategy to increase the efficacy of available drugs and enhance the delivery of chemotherapeutics through the blood brain barrier (BBB) is desperately needed. We investigated the potential of Cisplatin conjugated gold nanoparticle (GNP-UP-Cis) in combination with MR-guided Focused Ultrasound (MRgFUS) to intensify GBM treatment. Viability assays demonstrated that GNP-UP-Cis greatly inhibits the growth of GBM cells compared to free cisplatin and shows marked synergy with radiation therapy. Additionally, increased DNA damage through γH2AX phosphorylation was observed in GNP-UP-Cis treated cells, along with enhanced platinum concentrations. In vivo, GNP-UP-Cis greatly reduced the growth of GBM tumors and MRgFUS led to increased BBB permeability and GNP-drug delivery in brain tissue. Our studies suggest that GNP-Cis conjugates and MRgFUS can be used to focally enhance the delivery of targeted chemotherapeutics to brain tumors.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Cisplatino/uso terapéutico , Glioblastoma/tratamiento farmacológico , Oro/química , Nanopartículas del Metal/química , Ondas Ultrasónicas , Animales , Barrera Hematoencefálica , Neoplasias Encefálicas/metabolismo , Cisplatino/administración & dosificación , Cisplatino/química , Cisplatino/metabolismo , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Ratones , Ratones SCID , Microscopía Confocal
3.
Mol Genet Metab ; 115(1): 33-40, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25795516

RESUMEN

MPS IIIA is an inherited neurodegenerative lysosomal storage disorder characterized by cognitive impairment, sleep-wake cycle disturbance, speech difficulties, eventual mental regression and early death. Neuropathological changes include accumulation of heparan sulfate and glycolipids, neuroinflammation and degeneration. Pre-clinical animal studies indicate that replacement of the deficient enzyme, sulfamidase, via intra-cerebrospinal fluid (CSF) injection is a clinically-relevant treatment approach, reducing neuropathological changes and improving symptoms. Given that there are several routes of administration of enzyme into the CSF (intrathecal lumbar, cisternal and ventricular), determining the effectiveness of each injection strategy is crucial in order to provide the best outcome for patients. We delivered recombinant human sulfamidase (rhSGSH) to a congenic mouse model of MPS IIIA via each of the three routes. Mice were euthanized 24h or one-week post-injection; the distribution of enzyme within the brain and spinal cord parenchyma was investigated, and the impact on primary substrate levels and other pathological lesions determined. Both ventricular and cisternal injection of rhSGSH enable enzyme delivery to brain and spinal cord regions, with the former mediating large, statistically significant decreases in substrate levels and reducing microglial activation. The single lumbar CSF infusion permitted more restricted enzyme delivery, with no reduction in substrate levels and little change in other disease-related lesions in brain tissue. While the ventricular route is the most invasive of the three methods, this strategy may enable the widest distribution of enzyme within the brain, and thus requires further exploration.


Asunto(s)
Vías de Administración de Medicamentos , Terapia de Reemplazo Enzimático/métodos , Hidrolasas/administración & dosificación , Hidrolasas/líquido cefalorraquídeo , Mucopolisacaridosis III/tratamiento farmacológico , Mucopolisacaridosis III/genética , Animales , Encéfalo/patología , Cisterna Magna , Modelos Animales de Enfermedad , Heparitina Sulfato/líquido cefalorraquídeo , Humanos , Infusiones Intraventriculares , Infusión Espinal , Inyecciones , Inyecciones Intraventriculares , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/líquido cefalorraquídeo
4.
Eur J Neurosci ; 39(12): 2139-50, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25068161

RESUMEN

Lysosomal storage disorders are a large group of inherited metabolic conditions resulting from the deficiency of proteins involved in lysosomal catabolism, with resulting accumulation of substrates inside the cell. Two-thirds of these disorders are associated with a neurodegenerative phenotype and, although few therapeutic options are available to patients at present, clinical trials of several treatments including lysosomal enzyme replacement are underway. Although animal studies indicate the efficacy of presymptomatic treatment, it is largely unknown whether symptomatic disease-related pathology and functional deficits are reversible. To begin to address this, we used a naturally-occurring mouse model with Sanfilippo syndrome (mucopolysaccharidosis type IIIA) to examine the effectiveness of intracisternal cerebrospinal fluid enzyme replacement in early, mid- and symptomatic disease stage mice. We observed a disease-stage-dependent treatment effect, with the most significant reductions in primary and secondary substrate accumulation, astrogliosis and protein aggregate accumulation seen in mucopolysaccharidosis type IIIA mice treated very early in the disease course. Affected mice treated at a symptomatic age exhibited little change in these neuropathological markers in the time-frame of the study. Microgliosis was refractory to treatment regardless of the age at which treatment was instigated. Although longer-term studies are warranted, these findings indicate the importance of early intervention in this condition.


Asunto(s)
Terapia de Reemplazo Enzimático/métodos , Hidrolasas/uso terapéutico , Mucopolisacaridosis III/tratamiento farmacológico , Proteínas Recombinantes/uso terapéutico , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Astrocitos/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Gliosis/tratamiento farmacológico , Gliosis/patología , Gliosis/fisiopatología , Humanos , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/patología , Microglía/fisiología , Mucopolisacaridosis III/patología , Mucopolisacaridosis III/fisiopatología , Enfermedades Neurodegenerativas , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/fisiopatología
5.
Neurooncol Adv ; 5(1): vdad057, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287693

RESUMEN

Background: ZFTA-RELA (formerly known as c11orf-RELA) fused supratentorial ependymoma (ZFTAfus ST-EPN) has been recognized as a novel entity in the 2016 WHO classification of CNS tumors and further defined in the recent 2021 edition. ZFTAfus ST-EPN was reported to portend poorer prognosis when compared to its counterpart, YAP1 ST-EPN in some previously published series. The aim of this study was to determine the treatment outcome of molecularly confirmed and conventionally treated ZFTAfus ST-EPN patients treated in multiple institutions. Methods: We conducted a retrospective analysis of all pediatric patients with molecularly confirmed ZFTAfus ST-EPN patients treated in multiple institutions in 5 different countries (Australia, Canada, Germany, Switzerland, and Czechia). Survival outcomes were analyzed and correlated with clinical characteristics and treatment approaches. Results: A total of 108 patients were collated from multiple institutions in 5 different countries across three continents. We found across the entire cohort that the 5- and 10-year PFS were 65% and 63%, respectively. The 5- and 10-year OS of this cohort of patients were 87% and 73%. The rates of gross total resection (GTR) were high with 84 out of 108 (77.8%) patients achieving GTR. The vast majority of patients also received post-operative radiotherapy, 98 out of 108 (90.7%). Chemotherapy did not appear to provide any survival benefit in our patient cohort. Conclusion: This is the largest study to date of contemporaneously treated molecularly confirmed ZFTAfus ST-EPN patients which identified markedly improved survival outcomes compared to previously published series. This study also re-emphasizes the importance of maximal surgical resection in achieving optimal outcomes in pediatric patients with supratentorial ependymoma.

6.
J Control Release ; 330: 1034-1045, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33188825

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) is a surgically unresectable and devasting tumour in children. To date, there are no effective chemotherapeutics despite a myriad of clinical trials. The intact blood-brain barrier (BBB) is likely responsible for the limited clinical response to chemotherapy. MRI-guided focused ultrasound (MRgFUS) is a promising non-invasive method for treating CNS tumours. Moreover, MRgFUS allows for the temporary and repeated disruption of the BBB. Our group previously reported the feasibility of temporary BBB opening within the normal murine brainstem using MRgFUS following intravenous (IV) administration of microbubbles. In the current study, we set out to test the effectiveness of targeted chemotherapy when paired with MRgFUS in murine models of DIPG. Doxorubicin was selected from a drug screen consisting of conventional chemotherapeutics tested on patient-derived cell lines. We studied the RCAS/Tv-a model where RCAS-Cre, RCAS-PDGFB, and RCAS-H3.3K27M were used to drive tumourigenesis upon injection in the pons. We also used orthotopically injected SU-DIPG-6 and SU-DIPG-17 xenografts which demonstrated a diffusely infiltrative tumour growth pattern similar to human DIPG. In our study, SU-DIPG-17 xenografts were more representative of human DIPG with an intact BBB. Following IV administration of doxorubicin, MRgFUS-treated animals exhibited a 4-fold higher concentration of drug within the SU-DIPG-17 brainstem tumours compared to controls. Moreover, the volumetric tumour growth rate was significantly suppressed in MRgFUS-treated animals whose tumours also exhibited decreased Ki-67 expression. Herein, we provide evidence for the ability of MRgFUS to enhance drug delivery in a mouse model of DIPG. These data provide critical support for clinical trials investigating MRgFUS-mediated BBB opening, which may ameliorate DIPG chemotherapeutic approaches in children.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Preparaciones Farmacéuticas , Animales , Neoplasias del Tronco Encefálico/diagnóstico por imagen , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Humanos , Imagen por Resonancia Magnética , Ratones
7.
Cell Calcium ; 92: 102307, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33080445

RESUMEN

Glioblastoma (GBM) is the most common malignant primary brain tumour originating in the CNS. Median patient survival is <15 months with standard treatment which consists of surgery alongside radiation therapy and temozolomide chemotherapy. However, because of the aggressive nature of GBM, and the significant toxicity of these adjuvant therapies, long-term therapeutic effects are unsatisfactory. Thus, there is urgency to identify new drug targets for GBM. Recent evidence shows that the transient receptor potential melastatin 7 (TRPM7) cation channel is aberrantly upregulated in GBM and its inhibition leads to reduction of GBM cellular functions. This suggests that TRPM7 may be a potential drug target for GBM treatment. In this study, we assessed the effects of the specific TRPM7 antagonist waixenicin A on human GBM cell lines U87 or U251 both in vitro and in vivo. First, we demonstrated in vitro that application of waixenicin A reduced TRPM7 protein expression and inhibited the TRPM7-like currents in GBM cells. We also observed reduction of GBM cell viability, migration, and invasion. Using an intracranial xenograft GBM mouse model, we showed that with treatment of waixenicin A, there was increased cleaved caspase 3 activity, alongside reduction in Ki-67, cofilin, and Akt activity in vivo. Together, these data demonstrate higher GBM cell apoptosis, and lower proliferation, migration, invasion and survivability following treatment with waixenicin A.


Asunto(s)
Acetatos/farmacología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Diterpenos/farmacología , Glioblastoma/metabolismo , Glioblastoma/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Canales Catiónicos TRPM/antagonistas & inhibidores , Acetatos/administración & dosificación , Factores Despolimerizantes de la Actina/metabolismo , Animales , Caspasa 3/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diterpenos/administración & dosificación , Femenino , Humanos , Antígeno Ki-67/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Modelos Biológicos , Invasividad Neoplásica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Canales Catiónicos TRPM/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Eur J Neurosci ; 29(6): 1197-214, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19302155

RESUMEN

Mucopolysaccharidosis type IIIA is a neurodegenerative lysosomal storage disorder characterized by progressive loss of learned skills, sleep disturbance and behavioural problems. Absent or greatly reduced activity of sulphamidase, a lysosomal protein, results in intracellular accumulation of heparan sulphate. Subsequent neuroinflammation and neurodegeneration typify this and many other lysosomal storage disorders. We propose that intra-cerebrospinal fluid protein delivery represents a potential therapeutic avenue for treatment of this and other neurodegenerative conditions; however, technical restraints restrict examination of its use prior to adulthood in mice. We have used a naturally-occurring Mucopolysaccharidosis type IIIA mouse model to determine the effectiveness of combining intravenous protein replacement (1 mg/kg) from birth to 6 weeks of age with intra-cerebrospinal fluid sulphamidase delivery (100 microg, fortnightly from 6 weeks) on behaviour, the level of heparan sulphate-oligosaccharide storage and other neuropathology. Mice receiving combination treatment exhibited similar clinical improvement and reduction in heparan sulphate storage to those only receiving intra-cerebrospinal fluid enzyme. Reductions in micro- and astrogliosis and delayed development of ubiquitin-positive lesions were seen in both groups. A third group of intravenous-only treated mice did not exhibit clinical or neuropathological improvements. Intra-cerebrospinal fluid injection of sulphamidase effectively, but dose-dependently, treats neurological pathology in Mucopolysaccharidosis type IIIA, even when treatment begins in mice with established disease.


Asunto(s)
Hidrolasas/administración & dosificación , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Enfermedades por Almacenamiento Lisosomal/fisiopatología , Proteínas/administración & dosificación , Análisis de Varianza , Animales , Anticuerpos/administración & dosificación , Peso Corporal/efectos de los fármacos , Peso Corporal/genética , Encéfalo/enzimología , Cromatografía Líquida de Alta Presión/métodos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Heparitina Sulfato/administración & dosificación , Hidrolasas/inmunología , Enfermedades por Almacenamiento Lisosomal/genética , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/metabolismo , Necrosis/tratamiento farmacológico , Necrosis/etiología , Proteínas/inmunología , Espectrometría de Masas en Tándem/métodos , Factores de Tiempo
9.
J Control Release ; 281: 29-41, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29753957

RESUMEN

Magnetic Resonance Image-guided Focused Ultrasound (MRgFUS) has been used to achieve transient blood brain barrier (BBB) opening without tissue injury. Delivery of a targeted ultrasonic wave causes an interaction between administered microbubbles and the capillary bed resulting in enhanced vessel permeability. The use of MRgFUS in the brainstem has not previously been shown but could provide value in the treatment of tumours such as Diffuse Intrinsic Pontine Glioma (DIPG) where the intact BBB has contributed to the limited success of chemotherapy. Our primary objective was to determine whether the use of MRgFUS in this eloquent brain region could be performed without histological injury and functional deficits. Our secondary objective was to select an effective chemotherapeutic against patient derived DIPG cell lines and demonstrate enhanced brainstem delivery when combined with MRgFUS in vivo. Female Sprague Dawley rats were randomised to one of four groups: 1) Microbubble administration but no MRgFUS treatment; 2) MRgFUS only; 3) MRgFUS + microbubbles; and 4) MRgFUS + microbubbles + cisplatin. Physiological assessment was performed by monitoring of heart and respiratory rates. Motor function and co-ordination were evaluated by Rotarod and grip strength testing. Histological analysis for haemorrhage (H&E), neuronal nuclei (NeuN) and apoptosis (cleaved Caspase-3) was also performed. A drug screen of eight chemotherapy agents was conducted in three patient-derived DIPG cell lines (SU-DIPG IV, SU-DIPG XIII and SU-DIPG XVII). Doxorubicin was identified as an effective agent. NOD/SCID/GAMMA (NSG) mice were subsequently administered with 5 mg/kg of intravenous doxorubicin at the time of one of the following: 1) Microbubbles but no MRgFUS; 2) MRgFUS only; 3) MRgFUS + microbubbles and 4) no intervention. Brain specimens were extracted at 2 h and doxorubicin quantification was conducted using liquid chromatography mass spectrometry (LC/MS). BBB opening was confirmed by contrast enhancement on T1-weighted MR imaging and positive Evans blue staining of the brainstem. Normal cardiorespiratory parameters were preserved. Grip strength and Rotarod testing demonstrating no decline in performance across all groups. Histological analysis showed no evidence of haemorrhage, neuronal loss or increased apoptosis. Doxorubicin demonstrated cytotoxicity against all three cell lines and is known to have poor BBB permeability. Quantities measured in the brainstem of NSG mice were highest in the group receiving MRgFUS and microbubbles (431.5 ng/g). This was significantly higher than in mice who received no intervention (7.6 ng/g). Our data demonstrates both the preservation of histological and functional integrity of the brainstem following MRgFUS for BBB opening and the ability to significantly enhance drug delivery to the region, giving promise to the treatment of brainstem-specific conditions.


Asunto(s)
Antineoplásicos/administración & dosificación , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Glioma/tratamiento farmacológico , Ondas Ultrasónicas , Animales , Antineoplásicos/uso terapéutico , Encéfalo/metabolismo , Tronco Encefálico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Doxorrubicina/uso terapéutico , Portadores de Fármacos , Liberación de Fármacos , Femenino , Ratones SCID , Microburbujas , Permeabilidad , Ratas Sprague-Dawley , Distribución Tisular
10.
JIMD Rep ; 29: 59-68, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26620043

RESUMEN

Mucopolysaccharidosis IIIA (MPS IIIA) is a neurodegenerative lysosomal storage disorder characterised by progressive loss of learned skills, sleep disturbance and behavioural problems. Reduced activity of lysosomal sulfamidase results in accumulation of heparan sulfate and secondary storage of glycolipids in the brain. Intra-cisternal sulfamidase infusions reduce disease-related neuropathology; however, repeated injections may subject patients to the risk of infection and tissue damage so alternative approaches are required. We undertook a proof-of-principle study comparing the ability of slow/continual or repeat/bolus infusion to ameliorate neuropathology in MPS IIIA mouse brain. Six-week-old MPS IIIA mice were implanted with subcutaneously located mini-osmotic pumps filled with recombinant human sulfamidase (rhSGSH) or vehicle, connected to lateral ventricle-directed cannulae. Pumps were replaced at 8 weeks of age. Additional MPS IIIA mice received intra-cisternal bolus infusions of the same amount of rhSGSH (or vehicle), at 6 and 8 weeks of age. Unaffected mice received vehicle via each strategy. All mice were euthanised at 10 weeks of age and the brain was harvested to assess the effect of treatment on neuropathology. Mice receiving pump-delivered rhSGSH exhibited highly significant reductions in lysosomal storage markers (lysosomal integral membrane protein-2, GM3 ganglioside and filipin-positive lipids) and neuroinflammation (isolectin B4-positive microglia, glial fibrillary acidic protein-positive astroglia). MPS IIIA mice receiving rhSGSH via bolus infusion displayed reductions in these markers, but the effectiveness of the strategy was inferior to that seen with slow/pump-based delivery. Continual low-dose infusion may therefore be a more effective strategy for enzyme delivery in MPS IIIA.

11.
Hum Gene Ther ; 27(5): 363-75, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26975339

RESUMEN

Mucopolysaccharidosis type IIIA (MPS IIIA) is predominantly a disorder of the central nervous system, caused by a deficiency of sulfamidase (SGSH) with subsequent storage of heparan sulfate-derived oligosaccharides. No widely available therapy exists, and for this reason, a mouse model has been utilized to carry out a preclinical assessment of the benefit of intraparenchymal administration of a gene vector (AAVrh10-SGSH-IRES-SUMF1) into presymptomatic MPS IIIA mice. The outcome has been assessed with time, measuring primary and secondary storage material, neuroinflammation, and intracellular inclusions, all of which appear as the disease progresses. The vector resulted in predominantly ipsilateral distribution of SGSH, with substantially less detected in the contralateral hemisphere. Vector-derived SGSH enzyme improved heparan sulfate catabolism, reduced microglial activation, and, after a time delay, ameliorated GM3 ganglioside accumulation and halted ubiquitin-positive lesion formation in regions local to, or connected by projections to, the injection site. Improvements were not observed in regions of the brain distant from, or lacking connections with, the injection site. Intraparenchymal gene vector administration therefore has therapeutic potential provided that multiple brain regions are targeted with vector, in order to achieve widespread enzyme distribution and correction of disease pathology.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Hidrolasas/genética , Mucopolisacaridosis III/genética , Animales , Anticuerpos Neutralizantes/inmunología , Autofagia , Biomarcadores , Encéfalo/metabolismo , Proteínas de Unión al ADN , Dependovirus/clasificación , Modelos Animales de Enfermedad , Endosomas/metabolismo , Activación Enzimática , Femenino , Gangliósido G(M3)/metabolismo , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Vectores Genéticos/normas , Proteína Ácida Fibrilar de la Glía/metabolismo , Heparitina Sulfato/metabolismo , Proteínas del Grupo de Alta Movilidad , Humanos , Hidrolasas/inmunología , Hidrolasas/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/terapia , Proteínas de Saccharomyces cerevisiae , Transducción Genética
12.
Cancer Res ; 75(1): 134-46, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25391241

RESUMEN

Medulloblastoma is the most common malignant pediatric brain tumor, with metastases present at diagnosis conferring a poor prognosis. Mechanisms of dissemination are poorly understood and metastatic lesions are genetically divergent from the matched primary tumor. Effective and less toxic therapies that target both compartments have yet to be identified. Here, we report that the analysis of several large nonoverlapping cohorts of patients with medulloblastoma reveals MET kinase as a marker of sonic hedgehog (SHH)-driven medulloblastoma. Immunohistochemical analysis of phosphorylated, active MET kinase in an independent patient cohort confirmed its correlation with increased tumor relapse and poor survival, suggesting that patients with SHH medulloblastoma may benefit from MET-targeted therapy. In support of this hypothesis, we found that the approved MET inhibitor foretinib could suppress MET activation, decrease tumor cell proliferation, and induce apoptosis in SHH medulloblastomas in vitro and in vivo. Foretinib penetrated the blood-brain barrier and was effective in both the primary and metastatic tumor compartments. In established mouse xenograft or transgenic models of metastatic SHH medulloblastoma, foretinib administration reduced the growth of the primary tumor, decreased the incidence of metastases, and increased host survival. Taken together, our results provide a strong rationale to clinically evaluate foretinib as an effective therapy for patients with SHH-driven medulloblastoma.


Asunto(s)
Anilidas/farmacología , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/metabolismo , Quinolinas/farmacología , Anilidas/farmacocinética , Animales , Barrera Hematoencefálica/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Perfilación de la Expresión Génica , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Ratones Desnudos , Ratones Transgénicos , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Quinolinas/farmacocinética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Oncotarget ; 5(19): 9382-95, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25237832

RESUMEN

Malignant gliomas are highly proliferative and invasive neoplasms where total surgical resection is often impossible and effective local radiation therapy difficult. Consequently, there is a need to develop a greater understanding of the molecular events driving invasion and to identify novel treatment targets. Using microarray analysis comparing normal brain samples and mesenchymal glioblastoma multiforme (GBM), we identified over 140 significant genes involved in cell migration and invasion. The cofilin (CFL) pathway, which disassembles actin filaments, was highly up-regulated compared to normal brain. Up-regulation of LIM domain kinase 1 and 2 (LIMK1/2), that phosphorylates and inactivates cofilin, was confirmed in an additional independent data set comparing normal brain to GBM. We identified and utilized two small molecule inhibitors BMS-5 and Cucurbitacin I directed against the cofilin regulating kinases, LIMK1 and LIMK2, to target this pathway. Significant decreases in cell viability were observed in glioma cells treated with BMS-5 and Cucurbitacin I, while no cytotoxic effects were seen in normal astrocytes that lack LIMK. BMS-5 and Cucurbitacin I promoted increased adhesion in GBM cells, and decreased migration and invasion. Collectively, these data suggest that use of LIMK inhibitors may provide a novel way to target the invasive machinery in GBM.


Asunto(s)
Cofilina 1/metabolismo , Glioblastoma/patología , Quinasas Lim/antagonistas & inhibidores , Invasividad Neoplásica/genética , Encéfalo/patología , Caspasa 3/análisis , Caspasa 7/análisis , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Cofilina 1/antagonistas & inhibidores , Dosificación de Gen/genética , Glioblastoma/genética , Humanos , Quinasas Lim/biosíntesis , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño , Triterpenos/farmacología
15.
Gene ; 491(1): 53-7, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21963444

RESUMEN

Mucopolysaccharidosis type IIIA (MPS-IIIA) is a severe neurodegenerative lysosomal storage disorder caused by a deficiency of N-sulfoglucosamine sulfohydrolase (SGSH) activity with subsequent accumulation of partially-degraded heparan sulfate and other glycolipids. In this study, we have evaluated a gene therapy approach using a helper-dependent canine adenovirus vector that expresses human SGSH as a means of delivering sustained transgene expression to the brain. Initial testing in a mixed neural cell culture model demonstrated that the vector could significantly increase SGSH activity in transduced cells, resulting in near-normalization of heparan sulfate-derived fragments. While administration of vector by direct injection into the brain of adult MPS-IIIA mice enabled transgene expression for at least 8.5 months post-treatment, it was only in discrete areas of brain. Heparan sulfate storage was reduced in some regions following treatment, however there was no improvement in secondary neuropathological changes. These data demonstrate that helper-dependent canine adenovirus vectors are capable of neural transduction and mediate long-term transgene expression, but increased SGSH expression throughout the brain is likely to be required in order to effectively treat all aspects of the MPS-IIIA phenotype.


Asunto(s)
Adenovirus Caninos/genética , Hidrolasas/genética , Mucopolisacaridosis III/terapia , Animales , Encéfalo/metabolismo , Células Cultivadas , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos , Virus Helper/genética , Transgenes
16.
Exp Neurol ; 230(1): 123-30, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21515264

RESUMEN

Mucopolysaccharidosis type IIIA (MPS IIIA) is a neurodegenerative lysosomal storage disorder that results from a deficiency of sulfamidase (N-sulfoglucosamine sulfohydrolase), with consequential accumulation of its substrate, partially degraded heparan sulfate. Conventional doses (e.g. 1mg/kg) of intravenously delivered recombinant human sulfamidase (rhSGSH) do not improve neuropathology in MPS IIIA mice due to an inability to traverse the blood-brain barrier; however high-dose treatment or administration of enzyme that has been chemically modified to remove mannose-6-phosphate glycans has been shown to reduce neuropathology in related animal models. We have combined these approaches to evaluate the ability of 1, 5, 10 or 20mg/kg of similarly chemically modified or unmodified rhSGSH to reduce neuropathology following repeated intravenous delivery to adult MPS IIIA mice. rhSGSH was detected in brain homogenates from mice treated with all doses of modified rhSGSH and those receiving the two higher doses of unmodified rhSGSH, albeit at significantly lower levels. Immunohistochemically, rhSGSH visualized in the brain was localized to the endothelium, meninges and choroid plexus, with no convincing punctate intra-neuronal staining seen. This presumably underlies the failure of the treatment to reduce the relative level of a heparan sulfate-derived oligosaccharide (GlcNS-UA), or secondarily stored substrates that accumulate in MPS IIIA brain cells. However, modification of rhSGSH significantly increased its effectiveness in degrading GlcNS-UA in non-CNS tissues, potentially as a result of its reduced plasma clearance. If this observation is generally applicable, chemical modification may permit the use of significantly lower doses of lysosomal enzymes in patients currently receiving intravenous enzyme replacement therapy.


Asunto(s)
Hidrolasas/uso terapéutico , Animales , Encéfalo/patología , Plexo Coroideo/patología , Cromatografía Líquida de Alta Presión/métodos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Endotelio/patología , Ensayo de Inmunoadsorción Enzimática , Humanos , Hidrolasas/sangre , Hidrolasas/química , Manosafosfatos/sangre , Meninges/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mucopolisacaridosis III/sangre , Mucopolisacaridosis III/tratamiento farmacológico , Mucopolisacaridosis III/patología , Oligorribonucleótidos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA