Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Immunol ; 346: 103993, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31679751

RESUMEN

RasGRP1 is a key molecule that mediates antigen-initiated signaling for activation of the RAS-MAPK pathway in lymphocytes. Patients with aberrant RasGRP1 expression experience lymphocyte dysfunction and are afflicted with recurrent microbial infections. Yet, the underlying mechanism that accounts for microbial infection remains unknown. We previously reported that B1a cells are heterogeneous with respect to PD-L2 expression and that RasGRP1 deficiency preferentially impairs PD-L2+ B1a cell development. In the present study, we show that PD-L2+ B1a cells exhibit increased capacity for differentiation to CD138+ plasma cells that secrete natural IgM antibody, as well as IL-10 and GM-CSF, in response to TLR stimulation. In keeping with this, we show here that RasGRP1-deficent mice are much more susceptible to septic infection triggered by cecalligation and puncture than wild type mice, and that reconstitution of RasGRP1-deficient mice with wild type PD-L2+ B1a cells greatly rescues RasGRP1-deficient mice from sepsis. Thus, this study indicates a mechanism for the association of RasGRP1 deficiency with predispostion to infection in the loss of a particular B1a subpopulation.


Asunto(s)
Linfocitos B/inmunología , Infecciones Bacterianas/inmunología , Factores de Intercambio de Guanina Nucleótido/genética , Sepsis/inmunología , Animales , Ciego/cirugía , Diferenciación Celular/inmunología , Proliferación Celular , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Inmunoglobulina M/inmunología , Interleucina-10/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Sepsis/patología , Transducción de Señal/inmunología , Sindecano-1/metabolismo
2.
Front Mol Neurosci ; 14: 750578, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970117

RESUMEN

A number of neurodegenerative diseases are associated with the accumulation of misfolded proteins, including Alzheimer's disease (AD). In AD, misfolded proteins such as tau and amyloid-ß (Aß) form pathological insoluble deposits. It is hypothesized that molecules capable of dissolving such protein aggregates might reverse disease progression and improve the lives of afflicted AD patients. Here we report new functions of the highly conserved mammalian protein, Fas Apoptosis Inhibitory Molecule (FAIM). We found that FAIM-deficient Neuro 2A cells accumulate Aß oligomers/fibrils. We further found that recombinant human FAIM prevents the generation of pathologic Aß oligomers and fibrils in a cell-free system, suggesting that FAIM functions without any additional cellular components. More importantly, recombinant human FAIM disaggregates and solubilizes established Aß fibrils. Our results identify a previously unknown, completely novel candidate for understanding and treating irremediable, irreversible, and unrelenting neurodegenerative diseases.

3.
Front Neurosci ; 14: 110, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153351

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative illness that is unremittingly fatal and for which no effective treatment exists. All forms of ALS are characterized by protein aggregation. In familial forms of ALS, specific and heritable aggregation-prone proteins have been identified, such as mutant superoxide dismutase (SOD1). It has been suggested that a factor capable of preventing mutant SOD1 protein aggregation and/or disassembling mutant SOD1 protein aggregates would ameliorate SOD1-associated forms of familial ALS. Here we identify Fas Apoptosis Inhibitory Molecule (FAIM), a highly evolutionarily conserved 20 kDa protein, as an agent with this activity. We show FAIM counteracts intracellular accumulation of mutant SOD1 protein aggregates, which is increased in the absence of FAIM, as determined by pulse-shape analysis and filter trap assays. In a cell-free system, FAIM inhibits aggregation of mutant SOD1, and further disassembles and solubilizes established mutant SOD1 protein aggregates, as determined by thioflavin T (ThT), filter trap, and sedimentation assays. In sum, we report here a previously unknown activity of FAIM that opposes ALS disease-related protein aggregation and promotes proteostasis of an aggregation-prone ALS protein.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA