RESUMEN
KEY MESSAGE: We have developed a SNP array for sunflower containing more than 25 K markers, representing single loci mostly in or near transcribed regions of the genome. The array was successfully applied to genotype a diversity panel of lines, hybrids, and mapping populations and represented well the genetic diversity of cultivated sunflower. Results of PCoA and population substructure analysis underlined the complexity of the genetic composition of current elite breeding material. The performance of this genotyping platform for genome-based prediction of phenotypes and detection of QTL with improved resolution could be demonstrated based on the re-evaluation of a population segregating for resistance to Sclerotinia midstalk rot. Given our results, the newly developed 25 K SNP array is expected to be of great utility for the most important applications in genome-based sunflower breeding and research. ABSTRACT: Genotyping with a large number of molecular markers is a prerequisite to conduct genome-based genetic analyses with high precision. Here, we report the design and performance of a 25 K SNP genotyping array for sunflower (Helianthus annuus L.). SNPs were discovered based on variant calling in de novo assembled, UniGene-based contigs of sunflower derived from whole genome sequencing and amplicon sequences originating from four and 48 inbred lines, respectively. After inclusion of publically available transcriptome-derived SNPs, in silico design of the Illumina(®) Infinium iSelect HD BeadChip yielded successful assays for 22,299 predominantly haplotype-specific SNPs. The array was validated in a sunflower diversity panel including inbred lines, open-pollinated varieties, introgression lines, landraces, recombinant inbred lines, and F2 populations. Validation provided 20,502 high-quality bi-allelic SNPs with stable cluster performance whereby each SNP marker represents a single locus mostly in or near transcribed regions of the sunflower genome. Analyses of population structure and quantitative resistance to Sclerotinia midstalk rot demonstrate that this array represents a significant improvement over currently available genomic tools for genetic diversity analyses, genome-wide marker-trait association studies, and genetic mapping in sunflower.
Asunto(s)
Resistencia a la Enfermedad/genética , Técnicas de Genotipaje , Helianthus/genética , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Ascomicetos , Mapeo Cromosómico , ADN de Plantas/genética , Helianthus/microbiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas/microbiologíaRESUMEN
The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network.
RESUMEN
Genotyping with large numbers of molecular markers is now an indispensable tool within plant genetics and breeding. Especially through the identification of large numbers of single nucleotide polymorphism (SNP) markers using the novel high-throughput sequencing technologies, it is now possible to reliably identify many thousands of SNPs at many different loci in a given plant genome. For a number of important crop plants, SNP markers are now being used to design genotyping arrays containing thousands of markers spread over the entire genome and to analyse large numbers of samples. In this article, we discuss aspects that should be considered during the design of such large genotyping arrays and the analysis of individuals. The fact that crop plants are also often autopolyploid or allopolyploid is given due consideration. Furthermore, we outline some potential applications of large genotyping arrays including high-density genetic mapping, characterization (fingerprinting) of genetic material and breeding-related aspects such as association studies and genomic selection.