Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Mol Psychiatry ; 21(12): 1768-1780, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26728568

RESUMEN

Vascular endothelial growth factor (VEGF) is known to be required for the action of antidepressant therapies but its impact on brain synaptic function is poorly characterized. Using a combination of electrophysiological, single-molecule imaging and conditional transgenic approaches, we identified the molecular basis of the VEGF effect on synaptic transmission and plasticity. VEGF increases the postsynaptic responses mediated by the N-methyl-D-aspartate type of glutamate receptors (GluNRs) in hippocampal neurons. This is concurrent with the formation of new synapses and with the synaptic recruitment of GluNR expressing the GluN2B subunit (GluNR-2B). VEGF induces a rapid redistribution of GluNR-2B at synaptic sites by increasing the surface dynamics of these receptors within the membrane. Consistently, silencing the expression of the VEGF receptor 2 (VEGFR2) in neural cells impairs hippocampal-dependent synaptic plasticity and consolidation of emotional memory. These findings demonstrated the direct implication of VEGF signaling in neurons via VEGFR2 in proper synaptic function. They highlight the potential of VEGF as a key regulator of GluNR synaptic function and suggest a role for VEGF in new therapeutic approaches targeting GluNR in depression.


Asunto(s)
Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Conducta Animal , Técnicas de Cultivo de Célula , Potenciales Postsinápticos Excitadores , Miedo , Hipocampo/metabolismo , Ratones , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Subunidades de Proteína , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología
3.
J Neurophysiol ; 106(4): 2034-44, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21775719

RESUMEN

In immature neurons activation of ionotropic GABA receptors induces depolarizing membrane responses due to a high intracellular Cl(-) concentration ([Cl(-)](i)). However, it is difficult to draw conclusions about the functional consequences of subthreshold GABAergic depolarizations, since GABAergic membrane shunting and additional effects on voltage-dependent ion channels or action potential threshold must be considered. To systematically investigate factors that determine the GABAergic effect on neuronal excitability we performed whole cell patch-clamp recordings from Cajal-Retzius cells in immature rat neocortex, using [Cl(-)](i) between 10 and 50 mM. The effect of focal GABA application was quantified by measuring various parameters of GABAergic responses including the shift in minimal threshold current (rheobase). The rheobase shift was correlated with other parameters of the GABAergic responses by multiple linear regression analyses with a set of simple mathematical models. Our experiments demonstrate that focal GABA application induces heterogeneous rheobase shifts in Cajal-Retzius cells that could not be predicted reliably from [Cl(-)](i) or the GABAergic membrane depolarization. Implementation of a linear mathematical model, which takes the GABAergic membrane conductance and the difference between action potential threshold and GABA reversal potential into account, resulted in a close correlation between calculated and experimentally obtained rheobase shifts. Addition of a linear term proportional to the GABAergic membrane depolarization improved the accuracy of correlation. The main advantage of using multiple linear regression with simple models is that direction and strength of GABAergic excitability shifts can be analyzed by using only measured parameters of GABAergic responses and with minimal a priori information about cellular parameters.


Asunto(s)
Cloruros/farmacología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Neocórtex/citología , Receptores de GABA-A/fisiología , Ácido gamma-Aminobutírico/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Cloruros/metabolismo , Umbral Diferencial , Antagonistas del GABA/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Interneuronas/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Neocórtex/crecimiento & desarrollo , Técnicas de Placa-Clamp , Piridazinas/farmacología , Ratas , Ratas Wistar
4.
Science ; 242(4875): 74-7, 1988 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-2902687

RESUMEN

Lasting modifications of the receptive fields of neurons in the visual cortex can be induced by pairing visual stimuli with iontophoretic application of the neuromodulators acetylcholine and noradrenaline or the excitatory amino acids N-methyl-D-aspartate (NMDA) and L-glutamate. The modifications are obtained in less than 1 hour and persist for more than 40 minutes. Thus, acetylcholine and norepinephrine have a permissive role in use-dependent neuronal plasticity. These results support the notion of a postsynaptic threshold for neuronal malleability that differs from that of sodium-dependent action potentials.


Asunto(s)
Acetilcolina/farmacología , Ácido Aspártico/análogos & derivados , Glutamatos/farmacología , Norepinefrina/farmacología , Corteza Visual/fisiología , Animales , Ácido Aspártico/farmacología , Gatos , Ácido Glutámico , N-Metilaspartato , Plasticidad Neuronal , Neuronas/efectos de los fármacos , Neuronas/fisiología , Estimulación Luminosa , Valores de Referencia , Visión Ocular , Corteza Visual/efectos de los fármacos
5.
Clin Neurophysiol ; 130(8): 1342-1350, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31200241

RESUMEN

OBJECTIVES: In this paper we introduce a novel method for the evaluation of neonatal brain function via multivariate EEG (electroencephalography) signal processing and embedding into a probabilistic graph, the so called Chow-Liu tree. METHODS: Using 28 EEG recordings of preterm and term neonate infants the complex features of the EEG signals were constructed in the form of a Chow-Liu tree. The trees were embedded into a 3 dimensional Euclidean space. Clustering of specific EEG patterns was done by complete linkage algorithm. RESULTS: Our analytic tool was able to build clusters of patients with pathological EEG findings. In particular, we were able to make a visual proof on a 3d multidimensional scaling coordinate system with a good performance. The distances (graph edit distance) between Chow-Liu trees of different infants were proportional to the clinical findings of corresponding infants. CONCLUSION: Our method may provide a basis for the future development of a diagnostic/prognostic non-invasive brain monitoring tool which will be able to differentiate between a variety of complex clinical findings. SIGNIFICANCE: This model addresses relevant issues in neonatology and neuropediatrics in terms of identification of possible clinical factors which interfere with normal brain development and will allow fast unbiased recognition of infants with specific pathological EEG findings.


Asunto(s)
Ondas Encefálicas , Recién Nacido/fisiología , Modelos Neurológicos , Encéfalo/fisiología , Femenino , Humanos , Masculino
6.
Neuroscience ; 153(4): 1092-102, 2008 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-18455878

RESUMEN

The subplate plays an important role in forming neuronal connections during early cortical development. We characterized by the use of whole-cell and cell-attached patch-clamp recordings in coronal brain slices from newborn mice (postnatal day [P] 0-3) the functional properties of two major pathways onto subplate neurons (SPn), the thalamocortical and the intra-subplate synaptic input. The two afferent pathways were stimulated extracellularly with bipolar electrodes placed in the thalamus and the subplate, respectively. Synaptically evoked and pharmacologically isolated N-methyl-d-aspartate receptor (NMDAR) -mediated responses with an onset latency of approximately 6 ms could be reliably recorded in P0-3 SPn. Whereas the intra-subplate input revealed a pronounced facilitation using paired pulse stimulation at 60-120 ms or repetitive activation at 10-40 Hz, the thalamocortical input was either stable or markedly suppressed under these conditions. Single cell reverse transcription PCR revealed the expression of the NR2A, B and D subunit in all investigated SPn. The intra-subplate and the thalamocortical synaptic input did not differ in their sensitivity to NVP-AAM077 or ifenprodil, indicating that both synaptic inputs have a similar NR2A/2B subunit composition. At P0, NMDAR-mediated synaptic inputs arising from the thalamus were significantly larger as compared with the intra-subplate input. This difference could no longer be detected in P2-3 SPn, indicating an input-specific developmental regulation during the first Ps. Our data indicate that the thalamocortical and intra-subplate synaptic input onto P0-3 SPn differs in functional, molecular and developmental properties. The intra-subplate synaptic input shows more mature functional properties and sustains high stimulation frequencies, thereby promoting the immature thalamocortical input to the developing neocortical circuit.


Asunto(s)
Vías Nerviosas/fisiología , Neuronas/citología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Factores de Edad , Animales , Animales Recién Nacidos , Corteza Cerebral/citología , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Técnicas In Vitro , Ratones , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/efectos de la radiación , Técnicas de Placa-Clamp , Piperazinas/farmacología , Tálamo/fisiología
7.
Neuropharmacology ; 53(4): 524-33, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17681355

RESUMEN

The immature brain has a higher susceptibility to develop seizures, which often respond poorly to classical pharmacological treatment. It has been recently suggested that bumetanide, which blocks Na(+)-dependent K(+)-Cl(-)-cotransporter isoform 1 (NKCC1) and thus attenuates depolarizing GABAergic responses, could soothe epileptiform activity in immature nervous systems. To evaluate whether bumetanide consistently attenuates epileptiform activity, we investigated the effect of 10 microM bumetanide in five different in-vitro epilepsy models using field potential recordings in the CA3 region of intact mouse hippocampal preparations at postnatal day 4-7. Bumetanide reduced amplitude and frequency of ictal-like events (ILE) induced by 8.5 mM K(+), but it increased the frequency of ILE induced by 1 microM kainate. Inhibition of ligand-gated Cl(-) channels by 10 microM gabazine and 30 microM strychnine induced interictal activity (IA) that was only marginally affected by bumetanide. Removal of extracellular Mg(2+) induced both ILE and IA. Bumetanide had no effect on these ILE but enhanced the IA. Low-Mg(2+) solution containing 20 microM 4-AP induced late-recurrent discharges, which were slightly attenuated by bumetanide. In summary, our results demonstrate that bumetanide exerts diverse effects in different in-vitro epilepsy models.


Asunto(s)
Bumetanida/farmacología , Epilepsia/fisiopatología , Hipocampo/fisiopatología , Potasio/farmacología , Animales , Animales Recién Nacidos , Canales de Cloruro/antagonistas & inhibidores , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Técnicas In Vitro , Magnesio/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Simportadores de Cloruro de Sodio-Potasio/efectos de los fármacos , Simportadores de Cloruro de Sodio-Potasio/fisiología , Miembro 2 de la Familia de Transportadores de Soluto 12
8.
Prog Neurobiol ; 48(2): 131-66, 1996 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8737441

RESUMEN

Cortical structures are often critically affected by ischemic and traumatic lesions which may cause transient or permanent functional disturbances. These disorders consist of changes in the membrane properties of single cells and alterations in synaptic network interactions within and between cortical areas including large-scale reorganizations in the representation of the peripheral input. Prominent functional modifications consisting of massive membrane depolarizations, suppression of intracortical inhibitory synaptic mechanisms and enhancement of excitatory synaptic transmission can be observed within a few minutes following the onset of cortical hypoxia or ischemia and probably represent the trigger signals for the induction of neuronal hyperexcitability, irreversible cellular dysfunction and cell death. Pharmacological manipulation of these early events may therefore be the most effective approach to control ischemia and lesion induced disturbances and to attenuate long-term neurological deficits. The complexity of secondary structural and functional alterations in cortical and subcortical structures demands an early and powerful intervention before neuronal damage expands to intact regions. The unsatisfactory clinical experience with calcium and N-methyl-D-aspartate antagonists suggests that this result might be achieved with compounds that show a broad spectrum of actions at different ligand-activated receptors, voltage-dependent channels and that also act at the vascular system. Whether the same therapy strategies developed for the treatment of ischemic injury in the adult brain may be applied for the immature cortex is questionable, since young cortical networks with a high degree of synaptic plasticity reveal a different response pattern to hypoxic and ischemic insults. Age-dependent molecular biological, morphological and physiological parameters contribute to an enhanced susceptibility of the immature brain to these noxae during early ontogenesis and have to be investigated in more detail for the development of adequate clinical therapy.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Isquemia Encefálica/fisiopatología , Corteza Cerebral/fisiopatología , Adulto , Animales , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/lesiones , Humanos , Hipoxia Encefálica/fisiopatología
9.
J Neurosci ; 20(13): 5045-53, 2000 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-10864962

RESUMEN

Focal cortical malformations comprise a heterogeneous group of disturbances of brain development, commonly associated with drug-resistant epilepsy and/or neuropsychological deficits. Electrophysiological studies on rodent models of cortical malformations demonstrated intrinsic hyperexcitability in the lesion and the structurally intact surround, indicating widespread imbalances of excitation and inhibition. Here, alterations in regional expression of GABA(A) receptor subunits were investigated immunohistochemically in adult rats with focal cortical malformations attributable to neonatal freeze-lesions. These lesions are morphologically characterized by a three- to four-layered cortex with microsulcus formation. Widespread regionally differential reduction of GABA(A) receptor subunits alpha1, alpha2, alpha3, alpha5, and gamma2 was observed. Within the cortical malformation, this downregulation was most prominent for subunits alpha5 and gamma2, whereas medial to the lesion, a significant and even stronger decrease of all subunits was detected. Lateral to the dysplastic cortex, the decrease was most prominent for subunit gamma2 and moderate for subunits alpha1, alpha2, and alpha5, whereas subunit alpha3 was not consistently altered. Interestingly, the downregulation of GABA(A) receptor subunits also involved the ipsilateral hippocampal formation, as well as restricted contralateral neocortical areas, indicating widespread disturbances in the neocortical and hippocampal network. The described pattern of downregulation of GABA(A) receptor subunits allows the conclusion that there is a considerable modulation of subunit composition. Because alterations in subunit composition critically influence the electrophysiological and pharmacological properties of GABA(A) receptors, these alterations might contribute to the widespread hyperexcitability and help to explain pharmacotherapeutic characteristics in epileptic patients.


Asunto(s)
Encéfalo/metabolismo , Regulación hacia Abajo , Receptores de GABA-A/genética , Animales , Animales Recién Nacidos , Encéfalo/patología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Epilepsias Parciales/genética , Epilepsias Parciales/metabolismo , Epilepsias Parciales/patología , Congelación , Necrosis , Especificidad de Órganos , Ratas , Ratas Wistar
10.
J Neurosci ; 21(10): 3580-92, 2001 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-11331387

RESUMEN

Layer V pyramidal cells in rat barrel cortex are considered to play an important role in intracolumnar and transcolumnar signal processing. However, the precise circuitry mediating this processing is still incompletely understood. Here we obtained detailed maps of excitatory and inhibitory synaptic inputs onto the two major layer V pyramidal cell subtypes, intrinsically burst spiking (IB) and regular spiking (RS) cells, using a combination of caged glutamate photolysis, whole-cell patch-clamp recording, and three-dimensional reconstruction of biocytin-labeled cells. To excite presynaptic neurons with laminar specificity, the release of caged glutamate was calibrated and restricted to small areas of 50 x 50 microm in all cortical layers and in at least two neighboring barrel-related columns. IB cells received intracolumnar excitatory input from all layers, with the largest EPSP amplitudes originating from neurons in layers IV and VI. Prominent transcolumnar excitatory inputs were provided by presynaptic neurons also located in layers IV, V, and VI of neighboring columns. Inhibitory inputs were rare. In contrast, RS cells received distinct intracolumnar inhibitory inputs, especially from layers II/III and V. Intracolumnar excitatory inputs to RS cells were prominent from layers II-V, but relatively weak from layer VI. Conspicuous transcolumnar excitatory inputs could be evoked solely in layers IV and V. Our results show that layer V pyramidal cells are synaptically driven by presynaptic neurons located in every layer of the barrel cortex. RS cells seem to be preferentially involved in intracolumnar signal processing, whereas IB cells effectively integrate excitatory inputs across several columns.


Asunto(s)
Vías Nerviosas/fisiología , Células Piramidales/fisiología , Corteza Somatosensorial/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/análogos & derivados , Ácido Glutámico/farmacología , Técnicas In Vitro , Lisina/análogos & derivados , Masculino , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Técnicas de Placa-Clamp , Fotólisis , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Corteza Somatosensorial/citología , Corteza Somatosensorial/efectos de los fármacos , Estimulación Química , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
11.
J Neurosci Methods ; 141(2): 291-308, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15661312

RESUMEN

We present a novel database system for organizing and selecting quantitative experimental data on single neurons and neuronal microcircuitry that has proven useful for reference-keeping, experimental planning and computational modelling. Building on our previous experience with large neuroscientific databases, the system takes into account the diversity and method-dependence of single cell and microcircuitry data and provides tools for entering and retrieving published data without a priori interpretation or summarizing. Data representation is based on the framework suggested by biophysical theory and enables flexible combinations of data on membrane conductances, ionic and synaptic currents, morphology, connectivity and firing patterns. Innovative tools have been implemented for data retrieval with optional relaxation of search criteria along the conceptual dimensions of brain region, cortical layer, cell type and subcellular compartment. The relaxation procedures help to overcome the traditional trade-off between exact, non-interpreted data representation in the original nomenclature and convenient data retrieval. We demonstrate the use of these tools for the construction, tuning and validation of a multicompartmental model of a layer V pyramidal cell from the rat barrel cortex. CoCoDat is freely available at . Its application is scalable from offline use by individual researchers via local laboratory networks to a federation of distributed web sites in platform-independent XML format using Axiope tools.


Asunto(s)
Potenciales de Acción/fisiología , Sistemas de Administración de Bases de Datos , Almacenamiento y Recuperación de la Información/métodos , Red Nerviosa/citología , Neuronas/fisiología , Animales , Simulación por Computador , Modelos Neurológicos , Redes Neurales de la Computación , Ratas
12.
Neuroscience ; 304: 217-27, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26232716

RESUMEN

The subplate is a transient layer between the cortical plate and intermediate zone in the developing cortex. Thalamo-cortical axons form temporary synapses on subplate neurons (SPns) before invading the cortical plate. Neuronal activity within the subplate is of critical importance for the development of neocortical circuits and architecture. Although both glutamatergic and GABAergic inputs on SPns were reported, short-term plasticity of GABAergic transmission has not been investigated yet. GABAergic postsynaptic currents (GPSCs) were recorded from SPns in coronal neocortical slices prepared from postnatal day 3-4 mice using whole-cell patch-clamp technique. Evoked GPSCs (eGPSCs) elicited by electrical paired-pulse stimulation demonstrated paired-pulse depression at all interstimulus intervals tested. Baclofen, a specific GABAB receptor (GABABR) agonist, reduced eGPSC amplitudes and increased paired-pulse ratio (PPR), suggesting presynaptic location of functional GABABRs. Baclofen-induced effects were alleviated by (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid (CGP55845), a selective GABABR blocker. Moreover, CGP55845 increased eGPSC amplitudes and decreased PPR even under control conditions, indicating that GABABRs are tonically activated by ambient GABA. Because extracellular GABA concentration is mainly regulated by GABA transporters (GATs), we asked whether GATs release GABA. 1,2,5,6-tetrahydro-1-[2-[[(diphenylmethylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid (NNC-711) (10µM), a selective GAT-1 blocker, increased eGPSC decay time, decreased eGPSC amplitudes and PPR. The two last effects but not the first one were blocked by CGP55845, indicating that GAT-1 blockade causes an elevation of extracellular GABA concentration and in turn activation of extrasynaptic GABAARs and presynaptic GABABRs. 1-[2-[tris(4-methoxyphenyl)methoxy]ethyl]-(S)-3-piperidinecarboxylic acid (SNAP-5114), a specific GAT-2/3 blocker, failed to affect eGPSC kinetics. However, in contrast to NNC-711 SNAP-5114 increased eGPSC amplitudes and decreased PPR. In the presence of SNAP-5114 CGP55845 did not influence GABAergic transmission, indicating that GABABRs are not activated any longer. We conclude that in the subplate GAT-2/3 operates in reverse mode. GABA released via GAT-2/3 activates presynaptic GABABRs on GABAergic synapses and tonically inhibits GABAergic inputs on SPns.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Corteza Somatosensorial/fisiología , Potenciales Sinápticos/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Fármacos del Sistema Nervioso Central/farmacología , Estimulación Eléctrica , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Corteza Somatosensorial/efectos de los fármacos , Potenciales Sinápticos/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Técnicas de Cultivo de Tejidos
13.
Neuroscience ; 301: 106-20, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26047722

RESUMEN

Treatment of apnea of prematurity with methylxanthines like caffeine, aminophylline or theophylline can evoke hippocampal seizures. However, it is unknown at which interstitial brain concentrations methylxanthines promote such neonatal seizures or interfere with physiological 'early network oscillations' (ENOs) that are considered as pivotal for maturation of hippocampal neural networks. We studied theophylline and caffeine effects on ENOs in CA3 neurons (CA3-ENOs) and CA3 electrical stimulation-evoked monosynaptic CA1 field potentials (CA1-FPs) in sliced and intact hippocampi, respectively, from 8 to 10-days-old rats. Submillimolar doses of theophylline and caffeine, blocking adenosine receptors and phosphodiesterase-4 (PDE4), did not affect CA3-ENOs, ENO-associated cytosolic Ca(2+) transients or CA1-FPs nor did they provoke seizure-like discharges. Low millimolar doses of theophylline (⩾1mM) or caffeine (⩾5mM), blocking GABAA and glycine receptors plus sarcoplasmic-endoplasmic reticulum Ca(2+) ATPase (SERCA)-type Ca(2+) ATPases, evoked seizure-like discharges with no indication of cytosolic Ca(2+) dysregulation. Inhibiting PDE4 with rolipram or glycine receptors with strychnine had no effect on CA3-ENOs and did not occlude seizure-like events as tested with theophylline. GABAA receptor blockade induced seizure-like discharges and occluded theophylline-evoked seizure-like discharges in the slices, but not in the intact hippocampi. In summary, submillimolar methylxanthine concentrations do not acutely affect spontaneous CA3-ENOs or electrically evoked synaptic activities and low millimolar doses are needed to evoke seizure-like discharges in isolated developing hippocampal neural networks. We conclude that mechanisms of methylxanthine-related seizure-like discharges do not involve SERCA inhibition-related neuronal Ca(2+) dysregulation, PDE4 blockade or adenosine and glycine receptor inhibition, whereas GABA(A) receptor blockade may contribute partially.


Asunto(s)
Región CA3 Hipocampal/fisiopatología , Células Piramidales/fisiología , Convulsiones/inducido químicamente , Xantinas/administración & dosificación , Animales , Animales Recién Nacidos , Región CA3 Hipocampal/efectos de los fármacos , Cafeína/administración & dosificación , Calcio/metabolismo , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiopatología , Células Piramidales/efectos de los fármacos , Ratas , Receptores de GABA-A/fisiología , Receptores de Glicina/fisiología , Teofilina/administración & dosificación
14.
Eur J Neurosci ; 2(4): 344-357, 1990.
Artículo en Inglés | MEDLINE | ID: mdl-12106041

RESUMEN

The system of tangential connections was studied in area 17 of normally reared (NR), binocularly deprived (BD) and dark-reared (DR) kittens and adult cats. Connections were labelled antero- and retrogradely by intracortical micro-injections of several fluorescent markers and horseradish peroxidase conjugated with wheat-germ agglutinin (WGA-HRP). In 5-day-old kittens tangential connections consist of homogeneously distributed fibres extending maximally over 2.7 mm. Around postnatal day (pnd) ten these connections start to express the patchy pattern characteristic of the adult. Retrogradely stained somata and anterogradely labelled terminals become organized in individual 300 to 350 microm wide clusters with a centre-to-centre spacing of about 500 microm. During the first three postnatal weeks the horizontal connections increase their span to up to 10.5 mm and the spacing between individual patches increases to about 700 microm. Over the following 4 weeks these projections become reduced in length and number. In adult NR cats, tangential connections span a distance of up to 3 mm and form a lattice of 200 - 500 microm wide clusters, which have an average centre-to-centre spacing of 1050 microm. Tangential connections originate and terminate in all cortical laminae except layer I and they are organized in register. The distances spanned are largest in supragranular, intermediate in infragranular and shortest in granular layers. In BD and DR cats older than 10 weeks, the length of intracortical tangential fibres becomes reduced to the same extent as in NR animals, but individual clusters are less numerous. The authors conclude that the lattice-like structure of lateral connections evolves independently of visual experience, and that the selectivity of interactions results from pruning of initially exuberant connections. It is suggested that this pruning process is dependent on activity and influenced by visual experience.

15.
Eur J Neurosci ; 2(4): 358-368, 1990.
Artículo en Inglés | MEDLINE | ID: mdl-12106042

RESUMEN

The current source-density (CSD) analysis was used to investigate the organization of tangential synaptic connections in primary visual cortex of normally reared (NR) kittens and of NR, binocularly deprived (BD) and dark-reared (DR) adult cats. Laminar profiles of field potentials, elicited by intracortical microstimulation were measured at various distances from the stimulating electrodes. To exclude contamination by axon collaterals of antidromically stimulated thalamo-cortical fibres, these were destroyed by injecting the cytotoxin N-methyl-D-aspartate (NMDA) into the lateral geniculate nucleus 13 - 27 days before recording. The CSD profiles revealed distinct layer-specific patterns of lateral spread of activity. Invariably, the most prominent, long-lasting and far reaching responses were recorded in supragranular layers. Responses in layer IV were brief and confined to the vicinity of the stimulation site. Responses in infragranular layers spread as far as those in supragranular layers, but were of smaller amplitude. Latency considerations, the results of double shock stimulation, and the effects of translaminar cuts, suggest that these responses were monosynaptic and mediated by intracortical pathways with a conduction velocity of 0.3-5 m/s. The spatial spread of these responses changed substantially with age but was not influenced by visual deprivation. In NR adults, supra- and infragranular responses were recordable up to 2.5 mm from the stimulation site and layer IV responses up to 1 mm from the stimulation site. In kittens, the former responses spread up to 5 mm and the latter up to 2 mm from the site of stimulation. The amplitude of the responses decreased with distance from the stimulation site. This decrease was not always monotonic suggesting inhomogeneities in the tangential projections. The laminar distribution of current sinks and sources indicates that the pathways mediating tangential interactions form excitatory synapses on apical dendrites of pyramidal cells. It is concluded that the spatial spread of tangential excitatory interactions decreases with age, but that neither the laminar pattern nor the age-dependent reduction in the strength of tangential interactions are influenced by visual deprivation.

16.
Eur J Neurosci ; 2(4): 369-377, 1990.
Artículo en Inglés | MEDLINE | ID: mdl-12106043

RESUMEN

In this study the developmental changes of intracortical connectivity are related to changes of cortical receptor fields (RFs). The RFs of striate cortex neurons of 4- to 8.5-week-old kittens, reared under normal conditions (NR) or in a selective visual environment (SE), were analysed quantitatively and compared with adult cats. To unmask weak inputs from outside the conventional RF (CRF), cell excitability was raised by iontophoretic application of glutamate (GLU) and/or bicuculline methiodide (BIC) or by light stimulation of the CRF. Both the dominant discharge region (DDR) and the total RF (TRF) area were significantly larger in NR and SE kittens than in adult cats. Moreover, in kittens 18% of the cells had additional ectopic fields that were excitatory, had similar orientation preferences as the CRF, and ranged 4 degrees to 23 degrees from the centre of the CRF. In 74% of the cases the ectopic fields were direction-selective and 70% of them preferred stimuli moving toward the CRF. Ectopic fields occurred mainly in supragranular cells, were similarly frequent in simple and complex cells and slightly more frequent in SE (20.7%) than in NR (13.3%) kittens. In adult cats only one of 83 cells tested had an ectopic field. It is concluded that the age-dependent decrease in the RF size, the laminar distribution of cells having an ectopic RF, and the numerical reduction of these cells with age correlate well with the organization and postnatal pruning of tangential projections, suggesting that these contribute to the elaboration of specific response properties. Moreover, the authors infer from the early presence and from the selectivity of ectopic fields that the system of horizontal intrinsic connections mediates far-reaching, excitatory interactions between cortical neurons with similar functional properties and serves as a substrate for the processing of global aspects of visual patterns.

17.
J Comp Neurol ; 296(4): 598-613, 1990 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-2358553

RESUMEN

Intracellular recordings were obtained from pyramidal neurons in layer 5 of rat somatosensory and visual cortical slices maintained in vitro. When directly depolarized, one subclass of pyramidal neurons had the capacity to generate intrinsic burst discharges and another generated regular trains of single spikes. Burst responses were triggered in an all-or-none manner from depolarizing afterpotentials in most bursting neurons. Regular spiking cells responded to electrical stimulation of ascending afferents with a typical EPSP-IPSP sequence, whereas IPSPs were hard to detect in bursting cells. Orthodromic activation of the latter evoked a prominent voltage-dependent depolarization that could trigger a burst response. Intracellularly labelled bursting and regular spiking cells were located in layer 5b, but had distinctly different morphologies. Bursting neurons had a large pyramidal soma, a gradually emerging apical dendrite, and an extensive apical and basal dendritic tree. Their axonal collateral arborization was predominantly limited to layers 5/6. In contrast, regular spiking cells had a more rounded soma with abruptly emerging apical dendrite, a smaller dendritic arborization, and 2 to 8 ascending axonal collaterals that arborized widely in the supragranular layers. Both bursting and regular spiking cells had main axons that entered the subcortical white matter. These data show that some subgroups of pyramidal neurons within the deeper parts of layer 5 of rat cortex are morphologically and physiologically distinct and have different intracortical connections. Bursting cells presumably function to amplify and synchronize cortical outputs, whereas regular spiking output neurons provide excitatory feedback to neurons at all cortical levels and receive a more effective orthodromic inhibitory input. These data support the hypothesis that differences in gross neuronal structure, perhaps even the subtle differences that distinguish subclasses of neurons in a given lamina, are predictive of underlying differences in the type and distribution of ion channels in the nerve cell membrane and connections of cells within the cortical circuit.


Asunto(s)
Corteza Somatosensorial/fisiología , Corteza Visual/fisiología , Animales , Axones/ultraestructura , Dendritas/ultraestructura , Potenciales Evocados , Colorantes Fluorescentes , Técnicas In Vitro , Isoquinolinas , Ratas , Ratas Endogámicas , Corteza Somatosensorial/citología , Corteza Visual/citología
18.
Neuroscience ; 86(1): 265-77, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9692760

RESUMEN

We evaluate a novel set-up for scanning functional connectivity in brain slices from the somatosensory cortex of the rat. Upright infrared video microscopy for targeted placement of electrodes is combined with rapid photolysis of bath-applied caged neurotransmitter induced by a xenon flash lamp. Flash photolysis of caged glutamate and electrical stimulation produce comparable field potential responses and demonstrate that the viability of the submerged slices exceeds several hours. Glutamate release leads to field potential responses whose two phases are differentially affected by selective blockade of N-methyl-D-aspartate- and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type glutamate receptors with DL-2-amino-5-phosphonovaleric acid and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulphonamide, respectively. Rapid computer-controlled scanning of hundreds of distinct stimulation sites with simultaneous recordings at a fixed reference site allows construction of functional input maps from peak amplitudes and delays to peak of field potential responses. Selective laminar expansion of the functional input maps after bicuculline application demonstrates that the combination of this conveniently assembled set-up with pharmacological and physical manipulations can provide insights into the determinants of functional connectivity in brain slices.


Asunto(s)
Receptores de Glutamato/fisiología , Corteza Somatosensorial/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Animales , Bicuculina/análogos & derivados , Bicuculina/farmacología , Estimulación Eléctrica , Potenciales Evocados , Ácido Glutámico/análogos & derivados , Ácido Glutámico/metabolismo , Técnicas In Vitro , Potenciales de la Membrana , Microscopía por Video/instrumentación , Microscopía por Video/métodos , Fotólisis , Quinoxalinas/farmacología , Ratas , Receptores de Glutamato/efectos de los fármacos , Corteza Somatosensorial/citología , Tetrodotoxina/farmacología
19.
Neuroscience ; 85(1): 15-27, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9607699

RESUMEN

The long-term (< or = six months) functional consequences of permanent middle cerebral artery occlusion were studied with in vitro extra- and intracellular recording techniques in adult mouse neocortical slices. After survival times of one to three days, 28 days and six months, intracellular recordings from layers II/III pyramidal cells in the vicinity of the infarct did not reveal any statistically significant changes in the intrinsic membrane properties when compared to age-matched control animals. However, a pronounced hyperexcitability could be observed upon orthodromic synaptic stimulation in neocortical slices obtained from mice 28 days after induction of ischemia. Low-intensity electrical stimulation of the afferents elicited particularly in this group epileptiform extracellular field potential responses and intracellular excitatory postsynaptic potentials, that were longer in duration as compared to the controls. When the N-methyl-D-aspartate receptor-mediated excitatory postsynaptic potential was pharmacologically isolated in a bathing solution containing 0.1 mM Mg2+ and 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione, the synaptic responses were longer and larger in the ischemic cortex as compared to the controls. Higher stimulus intensities evoked in normal medium a biphasic inhibitory postsynaptic potential, that contained in the 28 days post-ischemia group a prominent amino-phosphonovaleric acid-sensitive component, indicating a strong concurrent activation of a N-methyl-D-aspartate receptor-mediated excitatory postsynaptic potential. This pronounced co-activation could only be observed in the 28 days ischemic group, and neither after one to three days or six months post-ischemia nor in the controls. The quantitative analysis of the efficiency of stimulus- evoked inhibitory postsynaptic potentials recorded in amino-phosphono-valeric acid revealed a reduction of GABA-mediated inhibition in ischemic cortex. Although this reduction in intracortical inhibition may already contribute to an augmentation of N-methyl-D-aspartate receptor-mediated excitation, our results do also indicate that the function of N-methyl-D-aspartate receptors is transiently enhanced in the ischemic cortex. This transient hyperexcitability does not only cause cellular dysfunction in the vicinity of the infarct, but may also contribute to neuronal damage due to excitotoxicity.


Asunto(s)
Isquemia Encefálica/fisiopatología , Neuronas/fisiología , Animales , Isquemia Encefálica/patología , Membranas Intracelulares/fisiología , Masculino , Ratones , Ratones Endogámicos , Red Nerviosa/fisiología , Sinapsis/fisiología , Factores de Tiempo
20.
Neuroscience ; 85(1): 29-43, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9607700

RESUMEN

Long-term hyperexcitability was found after unilateral, permanent middle cerebral artery occlusion in exofocal neocortical areas of the adult mouse [Mittmann et al. (1998) Neuroscience 85, 15-27]. The aim of the present study was to test the hypothesis in an identical paradigm of ischemia. whether alterations in the densities of both excitatory and inhibitory amino acid receptors may underlie these pathophysiological changes. Alterations in densities of [3H]dizocilpine, [3H]D,L-amino-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, [3H]kainate and [3H]muscimol binding sites were demonstrated with quantitative in vitro receptor autoradiography. All binding sites were severely reduced in the core of the ischemic lesion. A completely different reaction was found in the exofocal, histologically inconspicuous parts of the somatosensory cortex and the more remote neocortical areas of both hemispheres. The [3H]muscimol binding sites were significantly reduced four weeks after ischemia in the motor cortex, hindlimb representation area and exofocal parts of the primary and secondary somatosensory cortices of both hemispheres. The focus of the reduction in [3H]muscimol binding sites was found in lower layer V and upper layer VI. Contrastingly, the densities of [3H]dizocilpine binding sites were found to be increased in these areas, whereas those of [3H]D,L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and [3H]kainate binding sites did not show significant changes. The [3H]dizocilpine binding site density increased predominantly in layers III and IV. All binding sites were also reduced in the retrogradely reacting, gliotic part of the ipsilateral ventroposterior thalamic nucleus, whereas the [3H]D,L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid binding sites were increased in the surround of the ipsilateral nucleus and no changes in binding sites were seen in the whole contralateral nucleus. We conclude that permanent local ischemia leads to a long-term and widespread impairment of the normal balance between binding sites of excitatory and inhibitory neurotransmitter receptors in neocortical areas far away from the focus of the post-ischemic tissue damage. The imbalance comprises an up-regulation of the [3H]dizocilpine binding sites in the ion channels of N-methyl-D-aspartate receptors and a down-regulation of [3H]muscimol binding sites of the GABA(A) receptors in the ipsi- and contralateral neocortex. These changes at the receptor level explain the previously observed hyperexcitability with the appearance of epileptiform field potentials and the long duration of excitatory postsynaptic potentials four weeks after ischemia.


Asunto(s)
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Receptores de GABA/fisiología , Receptores de Glutamato/metabolismo , Animales , Sitios de Unión/fisiología , Encéfalo/patología , Isquemia Encefálica/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Masculino , Ratones , Ratones Endogámicos , Núcleos Talámicos/metabolismo , Tálamo/metabolismo , Tálamo/patología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA