Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Physiol ; 600(8): 1953-1968, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35156706

RESUMEN

Dysferlin is an integral membrane protein of the transverse tubules of skeletal muscle that is mutated or absent in limb girdle muscular dystrophy 2B and Miyoshi myopathy. Here we examine the role of dysferlin's seven C2 domains, C2A through C2G, in membrane repair and Ca2+ release, as well as in targeting dysferlin to the transverse tubules of skeletal muscle. We report that deletion of either domain C2A or C2B inhibits membrane repair completely, whereas deletion of C2C, C2D, C2E, C2F or C2G causes partial loss of membrane repair that is exacerbated in the absence of extracellular Ca2+ . Deletion of C2C, C2D, C2E, C2F or C2G also causes significant changes in Ca2+ release, measured as the amplitude of the Ca2+ transient before or after hypo-osmotic shock and the appearance of Ca2+ waves. Most deletants accumulate in endoplasmic reticulum. Only the C2A domain can be deleted without affecting dysferlin trafficking to transverse tubules, but Dysf-ΔC2A fails to support normal Ca2+ signalling after hypo-osmotic shock. Our data suggest that (i) every C2 domain contributes to repair; (ii) all C2 domains except C2B regulate Ca2+ signalling; (iii) transverse tubule localization is insufficient for normal Ca2+ signalling; and (iv) Ca2+ dependence of repair is mediated by C2C through C2G. Thus, dysferlin's C2 domains have distinct functions in Ca2+ signalling and sarcolemmal membrane repair and may play distinct roles in skeletal muscle. KEY POINTS: Dysferlin, a transmembrane protein containing seven C2 domains, C2A through C2G, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients and participates in sarcolemmal membrane repair. Each of dysferlin's C2 domains except C2B regulate Ca2+ signalling. Localization of dysferlin variants to the transverse tubules is not sufficient to support normal Ca2+ signalling or membrane repair. Each of dysferlin's C2 domains contributes to sarcolemmal membrane repair. The Ca2+ dependence of membrane repair is mediated by C2C through C2G. Dysferlin's C2 domains therefore have distinct functions in Ca2+ signalling and sarcolemmal membrane repair.


Asunto(s)
Dominios C2 , Proteínas de la Membrana , Disferlina/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Sarcolema/metabolismo
2.
J Physiol ; 595(15): 5191-5207, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28568606

RESUMEN

KEY POINTS: Dysferlin, the protein missing in limb girdle muscular dystrophy 2B and Miyoshi myopathy, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients against loss after osmotic shock injury (OSI). Local expression of dysferlin in dysferlin-null myofibres increases transient amplitude to control levels and protects them from loss after OSI. Inhibitors of ryanodine receptors (RyR1) and L-type Ca2+ channels protect voltage-induced Ca2+ transients from loss; thus both proteins play a role in injury in dysferlin's absence. Effects of Ca2+ -free medium and S107, which inhibits SR Ca2+ leak, suggest the SR as the primary source of Ca2+ responsible for the loss of the Ca2+ transient upon injury. Ca2+ waves were induced by OSI and suppressed by exogenous dysferlin. We conclude that dysferlin prevents injury-induced SR Ca2+ leak. ABSTRACT: Dysferlin concentrates in the transverse tubules of skeletal muscle and stabilizes Ca2+ transients when muscle fibres are subjected to osmotic shock injury (OSI). We show here that voltage-induced Ca2+ transients elicited in dysferlin-null A/J myofibres were smaller than control A/WySnJ fibres. Regional expression of Venus-dysferlin chimeras in A/J fibres restored the full amplitude of the Ca2+ transients and protected against OSI. We also show that drugs that target ryanodine receptors (RyR1: dantrolene, tetracaine, S107) and L-type Ca2+ channels (LTCCs: nifedipine, verapamil, diltiazem) prevented the decrease in Ca2+ transients in A/J fibres following OSI. Diltiazem specifically increased transients by ∼20% in uninjured A/J fibres, restoring them to control values. The fact that both RyR1s and LTCCs were involved in OSI-induced damage suggests that damage is mediated by increased Ca2+ leak from the sarcoplasmic reticulum (SR) through the RyR1. Congruent with this, injured A/J fibres produced Ca2+ sparks and Ca2+ waves. S107 (a stabilizer of RyR1-FK506 binding protein coupling that reduces Ca2+ leak) or local expression of Venus-dysferlin prevented OSI-induced Ca2+ waves. Our data suggest that dysferlin modulates SR Ca2+ release in skeletal muscle, and that in its absence OSI causes increased RyR1-mediated Ca2+ leak from the SR into the cytoplasm.


Asunto(s)
Calcio/fisiología , Disferlina/fisiología , Fibras Musculares Esqueléticas/fisiología , Animales , Canales de Calcio Tipo L/fisiología , Disferlina/genética , Ratones Noqueados , Presión Osmótica/fisiología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Retículo Sarcoplasmático/fisiología , Tiazepinas/farmacología
3.
Mol Ther Methods Clin Dev ; 32(2): 101257, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38779337

RESUMEN

Mutations in the DYSF gene, encoding the protein dysferlin, lead to several forms of muscular dystrophy. In healthy skeletal muscle, dysferlin concentrates in the transverse tubules and is involved in repairing the sarcolemma and stabilizing Ca2+ signaling after membrane disruption. The DYSF gene encodes 7-8 C2 domains, several Fer and Dysf domains, and a C-terminal transmembrane sequence. Because its coding sequence is too large to package in adeno-associated virus, the full-length sequence is not amenable to current gene delivery methods. Thus, we have examined smaller versions of dysferlin, termed "nanodysferlins," designed to eliminate several C2 domains, specifically C2 domains D, E, and F; B, D, and E; and B, D, E, and F. We also generated a variant by replacing eight amino acids in C2G in the nanodysferlin missing domains D through F. We electroporated dysferlin-null A/J mouse myofibers with Venus fusion constructs of these variants, or as untagged nanodysferlins together with GFP, to mark transfected fibers We found that, although these nanodysferlins failed to concentrate in transverse tubules, three of them supported membrane repair after laser wounding while all four bound the membrane repair protein, TRIM72/MG53, similar to WT dysferlin. By contrast, they failed to suppress Ca2+ waves after myofibers were injured by mild hypoosmotic shock. Our results suggest that the internal C2 domains of dysferlin are required for normal t-tubule localization and Ca2+ signaling and that membrane repair does not require these C2 domains.

4.
Front Physiol ; 13: 1032447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406982

RESUMEN

Dysferlin-null A/J myofibers generate abnormal Ca2+ transients that are slightly reduced in amplitude compared to controls. These are further reduced in amplitude by hypoosmotic shock and often appear as Ca2+ waves (Lukyanenko et al., J. Physiol., 2017). Ca2+ waves are typically associated with Ca2+-induced Ca2+ release, or CICR, which can be myopathic. We tested the ability of a permeable Ca2+ chelator, BAPTA-AM, to inhibit CICR in injured dysferlin-null fibers and found that 10-50 nM BAPTA-AM suppressed all Ca2+ waves. The same concentrations of BAPTA-AM increased the amplitude of the Ca2+ transient in A/J fibers to wild type levels and protected transients against the loss of amplitude after hypoosmotic shock, as also seen in wild type fibers. Incubation with 10 nM BAPTA-AM led to intracellular BAPTA concentrations of ∼60 nM, as estimated with its fluorescent analog, Fluo-4AM. This should be sufficient to restore intracellular Ca2+ to levels seen in wild type muscle. Fluo-4AM was ∼10-fold less effective than BAPTA-AM, however, consistent with its lower affinity for Ca2+. EGTA, which has an affinity for Ca2+ similar to BAPTA, but with much slower kinetics of binding, was even less potent when introduced as the -AM derivative. By contrast, a dysferlin variant with GCaMP6fu in place of its C2A domain accumulated at triad junctions, like wild type dysferlin, and suppressed all abnormal Ca2+ signaling. GCaMP6fu introduced as a Venus chimera did not accumulate at junctions and failed to suppress abnormal Ca2+ signaling. Our results suggest that leak of Ca2+ into the triad junctional cleft underlies dysregulation of Ca2+ signaling in dysferlin-null myofibers, and that dysferlin's C2A domain suppresses abnormal Ca2+ signaling and protects muscle against injury by binding Ca2+ in the cleft.

5.
Am J Physiol Cell Physiol ; 301(5): C1140-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21832249

RESUMEN

Gastrointestinal infection with Shiga toxins producing enterohemorrhagic Escherichia coli causes the spectrum of gastrointestinal and systemic complications, including hemorrhagic colitis and hemolytic uremic syndrome, which is fatal in ∼10% of patients. However, the molecular mechanisms of Stx endocytosis by enterocytes and the toxins cross the intestinal epithelium are largely uncharacterized. We have studied Shiga toxin 1 entry into enterohemorrhagic E. coli-infected intestinal epithelial cells and found that bacteria stimulate Shiga toxin 1 macropinocytosis through actin remodeling. This enterohemorrhagic E. coli-caused macropinocytosis occurs through a nonmuscle myosin II and cell division control 42 (Cdc42)-dependent mechanism. Macropinocytosis of Shiga toxin 1 is followed by its transcytosis to the basolateral environment, a step that is necessary for its systemic spread. Inhibition of Shiga toxin 1 macropinocytosis significantly decreases toxin uptake by intestinal epithelial cells and in this way provides an attractive, antibiotic-independent strategy for prevention of the harmful consequences of enterohemorrhagic E. coli infection.


Asunto(s)
Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli/metabolismo , Mucosa Intestinal/metabolismo , Pinocitosis , Toxina Shiga I/metabolismo , Transcitosis , Actinas/metabolismo , Línea Celular , Colon/metabolismo , Colon/microbiología , Infecciones por Escherichia coli/microbiología , Humanos , Mucosa Intestinal/microbiología , Miosina Tipo II/metabolismo , Proteína de Unión al GTP cdc42/metabolismo
6.
Curr Res Physiol ; 4: 47-59, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746826

RESUMEN

µ-Crystallin, encoded by the CRYM gene, binds the thyroid hormones, T3 and T4. Because T3 and T4 are potent regulators of metabolism and gene expression, and CRYM levels in human skeletal muscle can vary widely, we investigated the effects of overexpression of Crym. We generated transgenic mice, Crym tg, that expressed Crym protein specifically in skeletal muscle at levels 2.6-147.5 fold higher than in controls. Muscular functions, Ca2+ transients, contractile force, fatigue, running on treadmills or wheels, were not significantly altered, although T3 levels in tibialis anterior (TA) muscle were elevated ~190-fold and serum T4 was decreased 1.2-fold. Serum T3 and thyroid stimulating hormone (TSH) levels were unaffected. Crym transgenic mice studied in metabolic chambers showed a significant decrease in the respiratory exchange ratio (RER) corresponding to a 13.7% increase in fat utilization as an energy source compared to controls. Female but not male Crym tg mice gained weight more rapidly than controls when fed high fat or high simple carbohydrate diets. Although labeling for myosin heavy chains showed no fiber type differences in TA or soleus muscles, application of machine learning algorithms revealed small but significant morphological differences between Crym tg and control soleus fibers. RNA-seq and gene ontology enrichment analysis showed a significant shift towards genes associated with slower muscle function and its metabolic correlate, ß-oxidation. Protein expression showed a similar shift, though with little overlap. Our study shows that µ-crystallin plays an important role in determining substrate utilization in mammalian muscle and that high levels of µ-crystallin are associated with a shift toward greater fat metabolism.

7.
J Muscle Res Cell Motil ; 30(3-4): 161-70, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19707881

RESUMEN

Ryanodine receptors (RyRs) are the major ion channels in the sarcoplasmic reticulum responsible for Ca2+ release in muscle cells. Localization of RyRs is therefore critical to our understanding of Ca2+ cycling and Ca2+-dependent processes within ventricular cells. Recently, RyRs were reportedly found in non-classical locations in the middle of the sarcomere, between perinuclear mitochondria and in the inner mitochondrial membrane of cardiac mitochondria. However, for multiple reasons these reports could not be considered conclusive. Therefore, we modified immunogold labeling to visualize the distribution of RyRs in ventricular myocytes. Using antibodies to the voltage-dependent anion channel (i.e. VDAC) or cytochrome c along with our labeling method, we showed that these mitochondrial proteins were appropriately localized to the mitochondrial outer and inner membrane respectively. Immunogold labeling of ultrathin sections of intact and permeabilized ventricular myocytes with antibodies to three types of RyRs confirmed the existence of RyRs between the Z-lines and around the perinuclear mitochondria. However, we did not find any evidence to support localization of RyRs to the mitochondrial inner membrane.


Asunto(s)
Citocromos c/metabolismo , Ventrículos Cardíacos/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Animales , Ventrículos Cardíacos/ultraestructura , Masculino , Microscopía Inmunoelectrónica , Mitocondrias Cardíacas/ultraestructura , Miocitos Cardíacos/ultraestructura , Ratas , Ratas Sprague-Dawley
8.
Front Biosci ; 7: d1454-63, 2002 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12045014

RESUMEN

The amount of Ca2+ released from the sarcoplasmic reticulum (SR) is a principal determinant of cardiac contractility. Normally, the SR Ca2+ stores are mobilized through the mechanism of Ca2+-induced Ca2+ release (CICR). In this process, Ca2+ enters the cell through plasmalemmal voltage-dependent Ca2+ channels to activate the Ca2+ release channels in the SR membrane. Consequently, the control of Ca2+ release by cytosolic Ca2+ has traditionally been the main focus of cardiac excitation-contraction (EC) coupling research. Evidence obtained recently suggests that SR Ca release is controlled not only by cytosolic Ca2+, but also by Ca2+ in the lumen of the SR. The presence of a luminal Ca2+ sensor regulating release of SR luminal Ca2+ potentially has profound implications for our understanding of EC coupling and intracellular Ca2+ cycling. Here we review evidence, obtained using in situ and in vitro approaches, in support of such a luminal Ca2+ sensor in cardiac muscle. We also discuss the role of control of Ca2+ release channels by luminal Ca2+ in termination and stabilization of CICR, as well as in shaping the response of cardiac myocytes to various inotropic influences and diseased states such as Ca2+ overload and heart failure.


Asunto(s)
Calcio/fisiología , Miocardio/metabolismo , Retículo Sarcoplasmático/fisiología , Animales , Calcio/metabolismo , Canales de Calcio/fisiología , Corazón/fisiología , Corazón/fisiopatología , Humanos , Miocardio/citología , Miocardio/patología , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología
9.
Methods Mol Biol ; 991: 57-63, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23546659

RESUMEN

Delivery of nano-objects to specific cellular sub-domains is a challenging but intriguing task. There are two major barriers on the way of a nano-object to its intracellular target: (1) the cell membrane and (2) the intracellular barriers. The former is a common issue for all nanomedicine and a matter of very intense research. The latter is the primary problem for targeted delivery of nano-objects to specific cellular sub-domains and can be studied more easily using permeabilized cells. Membrane permeabilization for nanomedical research requires (1) perforation of the outer membrane, (2) development of a solution that will keep cellular sub-domains in the functional state, and (3) modification of the perimembrane cytoskeleton. We developed a very successful model of saponin membrane permeabilization of cardiomyocytes. This allowed us to deliver particles up to 20 nm in size to perinuclear and perimitochondrial space. Here we describe the method.


Asunto(s)
Nanoestructuras , Membrana Celular/metabolismo , Permeabilidad
10.
Methods Mol Biol ; 991: 33-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23546656

RESUMEN

Delivery of nano-objects to certain intracellular sub-domains is crucial for nanomedicine. Therefore delivery of nano-object to desirable cellular compartment has to be confirmed. The most valuable confirmation of the delivery comes from direct visualization of the nano-object. This visualization usually requires use of microscope and corresponding probe which has to be conjugated with the nano-object. There are two most popular methods of the visualization: confocal and electron microscopy. The former has significant limitations due to diffraction limited resolution of confocal systems and three-dimensional convolution of fluorescence. The latter should be significantly modified for needs of the visualization. Here we describe the method for precise localization of nano-object within the cell using electron microscopy and 1-2 nm gold particles as a nanomarker.


Asunto(s)
Oro/química , Nanopartículas del Metal , Fracciones Subcelulares/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión
11.
PLoS One ; 8(7): e69196, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874912

RESUMEN

Life-threatening intestinal and systemic effects of the Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC) require toxin uptake and transcytosis across intestinal epithelial cells. We have recently demonstrated that EHEC infection of intestinal epithelial cells stimulates toxin macropinocytosis, an actin-dependent endocytic pathway. Host actin rearrangement necessary for EHEC attachment to enterocytes is mediated by the type 3 secretion system which functions as a molecular syringe to translocate bacterial effector proteins directly into host cells. Actin-dependent EHEC attachment also requires the outer membrane protein intimin, a major EHEC adhesin. Here, we investigate the role of type 3 secretion in actin turnover occurring during toxin macropinocytosis. Toxin macropinocytosis is independent of EHEC type 3 secretion and intimin attachment. EHEC soluble factors are sufficient to stimulate macropinocytosis and deliver toxin into enterocytes in vitro and in vivo; intact bacteria are not required. Intimin-negative enteroaggregative Escherichia coli (EAEC) O104:H4 robustly stimulate Shiga toxin macropinocytosis into intestinal epithelial cells. The apical macropinosomes formed in intestinal epithelial cells move through the cells and release their cargo at these cells' basolateral sides. Further analysis of EHEC secreted proteins shows that a serine protease EspP alone is able to stimulate host actin remodeling and toxin macropinocytosis. The observation that soluble factors, possibly serine proteases including EspP, from each of two genetically distinct toxin-producing strains, can stimulate Shiga toxin macropinocytosis and transcellular transcytosis alters current ideas concerning mechanisms whereby Shiga toxin interacts with human enterocytes. Mechanisms important for this macropinocytic pathway could suggest new potential therapeutic targets for Shiga toxin-induced disease.


Asunto(s)
Escherichia coli Enterohemorrágica/enzimología , Proteínas de Escherichia coli/metabolismo , Mucosa Intestinal/metabolismo , Pinocitosis/fisiología , Serina Endopeptidasas/metabolismo , Toxina Shiga/metabolismo , Actinas/metabolismo , Animales , Sistemas de Secreción Bacterianos/fisiología , Línea Celular , Técnica del Anticuerpo Fluorescente , Humanos , Íleon/citología , Íleon/metabolismo , Íleon/ultraestructura , Mucosa Intestinal/ultraestructura , Ratones , Microscopía Electrónica de Transmisión
12.
Future Cardiol ; 5(4): 343-54, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19656059

RESUMEN

Oxysterols are biologically active molecules that result from the oxidation of cholesterol. Several oxysterols are found in macrophages and macrophage-derived 'foam cells' in atherosclerotic tissue. Lipophilic oxysterols penetrate cell membranes and, therefore, their concentrations can reach harmful levels in endothelial and smooth muscle cells located in close proximity to the atherosclerotic plaques or inflammatory zones. New findings suggest that the effects of oxysterols on cardiomyocytes can lead to cell hypertrophy and death. This may make oxysterols one of the major factors precipitating morbidity in atherosclerosis-induced cardiac diseases and inflammation-induced heart complications. The pathological actions of oxysterols on muscle cells were shown to depend on dysfunctional Ca(2+) signaling; however, the mechanisms of the effects remain to be elucidated. Understanding the effects of oxysterols could lead to therapies that modulate malfunction of cardiomyocytes. This review discusses the experimental findings and the relevance of oxysterols to heart failure, and suggests strategies for important future investigations.


Asunto(s)
Colesterol/metabolismo , Insuficiencia Cardíaca/metabolismo , Animales , Apoptosis , Arteriosclerosis/metabolismo , Calcio/metabolismo , Humanos , Macrófagos/metabolismo , Músculo Liso/patología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Oxidación-Reducción
13.
Int J Biochem Cell Biol ; 41(10): 1957-71, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19703657

RESUMEN

Ca(2+) signaling is of vital importance to cardiac cell function and plays an important role in heart failure. It is based on sarcolemmal, sarcoplasmic reticulum and mitochondrial Ca(2+) cycling. While the first two are well characterized, the latter remains unclear, controversial and technically challenging. In mammalian cardiac myocytes, Ca(2+) influx through L-type calcium channels in the sarcolemmal membrane triggers Ca(2+) release from the nearby junctional sarcoplasmic reticulum to produce Ca(2+) sparks. When this triggering is synchronized by the cardiac action potential, a global [Ca(2+)](i) transient arises from coordinated Ca(2+) release events. The ends of intermyofibrillar mitochondria are located within 20 nm of the junctional sarcoplasmic reticulum and thereby experience a high local [Ca(2+)] during the Ca(2+) release process. Both local and global Ca(2+) signals may thus influence calcium signaling in mitochondria and, reciprocally, mitochondria may contribute to the local control of calcium signaling. In addition to the intermyofibrillar mitochondria, morphologically distinct mitochondria are also located in the perinuclear and subsarcolemmal regions of the cardiomyocyte and thus experience a different local [Ca(2+)]. Here we review the literature in regard to several issues of broad interest: (1) the ultrastructural basis for mitochondrion - sarcoplasmic reticulum cross-signaling; (2) mechanisms of sarcoplasmic reticulum signaling; (3) mitochondrial calcium signaling; and (4) the possible interplay of calcium signaling between the sarcoplasmic reticulum and adjacent mitochondria. Finally, this review discusses experimental findings and mathematical models of cardiac calcium signaling between the sarcoplasmic reticulum and mitochondria, identifies weaknesses in these models, and suggests strategies and approaches for future investigations.


Asunto(s)
Señalización del Calcio/fisiología , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Humanos , Modelos Biológicos , Retículo Sarcoplasmático/metabolismo
14.
Nanomedicine (Lond) ; 2(6): 831-46, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18095849

RESUMEN

Cardiovascular disease, including heart failure, is one of the leading causes of mortality in the world. Delivery of nano-objects as carriers for markers, drugs or therapeutic genes to cellular organelles has the potential to sharply increase the efficiency of diagnostic and treatment protocols for heart failure. However, cardiac cells present special problems to the delivery of nano-objects, and the number of papers devoted to this important area is remarkably small. The present review discusses fundamental aspects, problems and perspectives in the delivery of nano-objects to functional sub-domains of failing cardiomyocytes. What size nano-objects can reach cellular sub-domains in failing hearts? What are the mechanisms for their permeation through the sarcolemma? How can we improve the delivery of nano-objects to the sub-domains? Answering these questions is fundamental to identifying cellular targets within the failing heart and the development of nanocarriers for heart-failure therapy at the cellular level.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/tendencias , Cardiopatías/diagnóstico , Cardiopatías/terapia , Miocitos Cardíacos/metabolismo , Nanoestructuras/uso terapéutico , Animales , Materiales Biocompatibles/farmacocinética , Materiales Biocompatibles/uso terapéutico , Cardiopatías/metabolismo , Humanos , Miocitos Cardíacos/patología , Nanomedicina/métodos , Nanomedicina/tendencias , Nanoestructuras/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA