RESUMEN
Mural cells directly contact macrophages in the dural layer of the meninges to suppress pro-inflammatory phenotypes, including antigen presentation and lymphocyte differentiation. These mechanisms represent new targets for modulating CNS immune surveillance and pathological inflammation (Min et al. 2024. J. Exp. Med.https://doi.org/10.1084/jem.20230326).
Asunto(s)
Antiinflamatorios , Pintura , Humanos , Inflamación , Presentación de Antígeno , Vigilancia InmunológicaRESUMEN
Posthemorrhagic hydrocephalus (PHH) in premature infants is a common neurological disorder treated with invasive neurosurgical interventions. Patients with PHH lack effective therapeutic interventions and suffer chronic comorbidities. Here, we report a murine lysophosphatidic acid (LPA)-induced postnatal PHH model that maps neurodevelopmentally to premature infants, a clinically accessible high-risk population, and demonstrates ventriculomegaly with increased intracranial pressure. Administration of LPA, a blood-borne signaling lipid, acutely disrupted the ependymal cells that generate CSF flow, which was followed by cell death, phagocytosis, and ventricular surface denudation. This mechanism is distinct from a previously reported fetal model that induces PHH through developmental alterations. Analyses of LPA receptor-null mice identified LPA1 and LPA3 as key mediators of PHH. Pharmacological blockade of LPA1 prevented PHH in LPA-injected animals, supporting the medical tractability of LPA receptor antagonists in preventing PHH and negative CNS sequelae in premature infants.