Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 140(19): 2053-2062, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-35576529

RESUMEN

Polymerization of deoxygenated hemoglobin S underlies the pathophysiology of sickle cell disease (SCD). In activating red blood cell pyruvate kinase and glycolysis, mitapivat (AG-348) increases adenosine triphosphate (ATP) levels and decreases the 2,3-diphosphoglycerate (2,3-DPG) concentration, an upstream precursor in glycolysis. Both changes have therapeutic potential for patients with SCD. Here, we evaluated the safety and tolerability of multiple ascending doses of mitapivat in adults with SCD with no recent blood transfusions or changes in hydroxyurea or l-glutamine therapy. Seventeen subjects were enrolled; 1 subject was withdrawn shortly after starting the study. Sixteen subjects completed 3 ascending dose levels of mitapivat (5, 20, and 50 mg, twice daily [BID]) for 2 weeks each; following a protocol amendment, the dose was escalated to 100 mg BID in 9 subjects. Mitapivat was well tolerated at all dose levels, with the most common treatment-emergent adverse events (AEs) being insomnia, headache, and hypertension. Six serious AEs (SAEs) included 4 vaso-occlusive crises (VOCs), non-VOC-related shoulder pain, and a preexisting pulmonary embolism. Two VOCs occurred during drug taper and were possibly drug related; no other SAEs were drug related. Mean hemoglobin increase at the 50 mg BID dose level was 1.2 g/dL, with 9 of 16 (56.3%) patients achieving a hemoglobin response of a ≥1 g/dL increase compared with baseline. Mean reductions in hemolytic markers and dose-dependent decreases in 2,3-DPG and increases in ATP were also observed. This study provides proof of concept that mitapivat has disease-modifying potential in patients with SCD. This trial was registered at www.clinicaltrials.gov as #NCT04000165.


Asunto(s)
Anemia de Células Falciformes , Piruvato Quinasa , Adulto , Humanos , Ácido Pirúvico , 2,3-Difosfoglicerato , Anemia de Células Falciformes/tratamiento farmacológico , Hemoglobinas , Adenosina Trifosfato
2.
Haematologica ; 109(8): 2639-2652, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38450513

RESUMEN

Mitapivat, a pyruvate kinase activator, shows great potential as a sickle cell disease (SCD)-modifying therapy. The safety and efficacy of mitapivat as a long-term maintenance therapy are currently being evaluated in two open-label studies. Here we applied a comprehensive multi-omics approach to investigate the impact of activating pyruvate kinase on red blood cells (RBC) from 15 SCD patients. HbSS patients were enrolled in one of the open-label, extended studies (NCT04610866). Leukodepleted RBC obtained from fresh whole blood at baseline, prior to drug initiation, and at longitudinal timepoints over the course of the study were processed for multi-omics through a stepwise extraction of metabolites, lipids and proteins. Mitapivat therapy had significant effects on the metabolome, lipidome and proteome of SCD RBC. Mitapivat decreased 2,3-diphosphoglycerate levels, increased adenosine triphosphate levels, and improved hematologic and sickling parameters in patients with SCD. Agreement between omics measurements and clinical measurements confirmed the specificity of mitapivat on targeting late glycolysis, with glycolytic metabolites ranking as the top correlates to parameters of hemoglobin S oxygen affinity (p50) and sickling kinetics (t50) during treatment. Mitapivat markedly reduced levels of proteins of mitochondrial origin within 2 weeks of initiation of treatment, with minimal changes in reticulocyte counts. In the first 6 months of treatment there were also transient elevations of lysophosphatidylcholines and oxylipins with depletion of free fatty acids, suggestive of an effect on membrane lipid remodeling. Multi-omics analysis of RBC identified benefits for glycolysis, as well as activation of the Lands cycle.


Asunto(s)
Anemia de Células Falciformes , Eritrocitos , Piruvato Quinasa , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/sangre , Activación Enzimática , Activadores de Enzimas/uso terapéutico , Activadores de Enzimas/farmacología , Eritrocitos/metabolismo , Glucólisis/efectos de los fármacos , Metaboloma , Metabolómica/métodos , Multiómica , Proteoma , Proteómica/métodos , Piruvato Quinasa/metabolismo , Resultado del Tratamiento
3.
PLoS Pathog ; 15(5): e1007644, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31086414

RESUMEN

Borrelia burgdorferi, the causative agent of Lyme disease in humans, is maintained in a complex biphasic life cycle, which alternates between tick and vertebrate hosts. To successfully survive and complete its enzootic cycle, B. burgdorferi adapts to diverse hosts by regulating genes required for survival in specific environments. Here we describe the first ever use of transposon insertion sequencing (Tn-seq) to identify genes required for B. burgdorferi survival in its tick host. We found that insertions into 46 genes resulted in a complete loss of recovery of mutants from larval Ixodes ticks. Insertions in an additional 56 genes resulted in a >90% decrease in fitness. The screen identified both previously known and new genes important for larval tick survival. Almost half of the genes required for survival in the tick encode proteins of unknown function, while a significant portion (over 20%) encode membrane-associated proteins or lipoproteins. We validated the results of the screen for five Tn mutants by performing individual competition assays using mutant and complemented strains. To better understand the role of one of these genes in tick survival, we conducted mechanistic studies of bb0017, a gene previously shown to be required for resistance against oxidative stress. In this study we show that BB0017 affects the regulation of key borrelial virulence determinants. The application of Tn-seq to in vivo screening of B. burgdorferi in its natural vector is a powerful tool that can be used to address many different aspects of the host pathogen interaction.


Asunto(s)
Proteínas Bacterianas/genética , Borrelia burgdorferi/crecimiento & desarrollo , Elementos Transponibles de ADN , Regulación Bacteriana de la Expresión Génica , Enfermedad de Lyme/microbiología , Garrapatas/crecimiento & desarrollo , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/inmunología , Modelos Animales de Enfermedad , Vectores de Enfermedades , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Enfermedad de Lyme/inmunología , Ratones , Garrapatas/microbiología , Factores de Virulencia/metabolismo
4.
PLoS Pathog ; 13(2): e1006225, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28212410

RESUMEN

Borrelia burgdorferi, the causative agent of Lyme disease in humans, is exposed to reactive oxygen and nitrogen species (ROS and RNS) in both the tick vector and vertebrate reservoir hosts. B. burgdorferi contains a limited repertoire of canonical oxidative stress response genes, suggesting that novel gene functions may be important for protection of B. burgdorferi against ROS or RNS exposure. Here, we use transposon insertion sequencing (Tn-seq) to conduct an unbiased search for genes involved in resistance to nitric oxide, hydrogen peroxide, and tertiary-butyl hydroperoxide in vitro. The screens identified 66 genes whose disruption resulted in increased susceptibility to at least one of the stressors. These genes include previously characterized mediators of ROS and RNS resistance (including components of the nucleotide excision repair pathway and a subunit of a riboflavin transporter), as well as novel putative resistance candidates. DNA repair mutants were among the most sensitive to RNS in the Tn-seq screen, and survival assays with individual Tn mutants confirmed that the putative ribonuclease BB0839 is involved in resistance to nitric oxide. In contrast, mutants lacking predicted inner membrane proteins or transporters were among the most sensitive to ROS, and the contribution of three such membrane proteins (BB0017, BB0164, and BB0202) to ROS sensitivity was confirmed using individual Tn mutants and complemented strains. Further analysis showed that levels of intracellular manganese are significantly reduced in the Tn::bb0164 mutant, identifying a novel role for BB0164 in B. burgdorferi manganese homeostasis. Infection of C57BL/6 and gp91phox-/- mice with a mini-library of 39 Tn mutants showed that many of the genes identified in the in vitro screens are required for infectivity in mice. Collectively, our data provide insight into how B. burgdorferi responds to ROS and RNS and suggests that this response is relevant to the in vivo success of the organism.


Asunto(s)
Borrelia burgdorferi/genética , Borrelia burgdorferi/inmunología , Genes Bacterianos/inmunología , Enfermedad de Lyme/microbiología , Animales , Modelos Animales de Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedad de Lyme/inmunología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Mol Microbiol ; 101(6): 1003-23, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27279039

RESUMEN

Borrelia burgdorferi maintains a complex life cycle between tick and vertebrate hosts. Although some genes have been identified as contributing to bacterial adaptation in the different hosts, the list is incomplete. In this manuscript, we report the first use of transposon mutagenesis combined with high-throughput sequencing (Tn-seq) in B. burgdorferi. We utilize the technique to investigate mechanisms of carbohydrate utilization in B. burgdorferi and the role of carbohydrate metabolism during mouse infection. We performed genetic fitness analyses to identify genes encoding factors contributing to growth on glucose, maltose, mannose, trehalose and N-acetyl-glucosamine. We obtained insight into the potential functions of proteins predicted to be involved in carbohydrate utilization and identified additional factors previously unrecognized as contributing to the metabolism of the tested carbohydrates. Strong phenotypes were observed for the putative carbohydrate phosphotransferase transporters BB0408 and BBB29 as well as the response regulator Rrp1. We further validated Tn-seq for use in mouse studies and were able to correctly identify known infectivity factors as well as additional transporters and genes on lp54 that may contribute to optimal mouse infection. As such, this study establishes Tn-seq as a powerful method for both in vitro and in vivo studies of B. burgdorferi.


Asunto(s)
Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/patogenicidad , Enfermedad de Lyme/microbiología , Animales , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/genética , Metabolismo de los Hidratos de Carbono/genética , Elementos Transponibles de ADN , Regulación Bacteriana de la Expresión Génica , Aptitud Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutagénesis Insercional , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Garrapatas/microbiología , Factores de Virulencia/metabolismo
6.
Learn Mem ; 21(11): 591-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25320351

RESUMEN

Post-learning sleep is beneficial for human memory. However, it may be that not all memories benefit equally from sleep. Here, we manipulated a spatial learning task using monetary reward and performance feedback, asking whether enhancing the salience of the task would augment overnight memory consolidation and alter its incorporation into dreaming. Contrary to our hypothesis, we found that the addition of reward impaired overnight consolidation of spatial memory. Our findings seemingly contradict prior reports that enhancing the reward value of learned information augments sleep-dependent memory processing. Given that the reward followed a negative reinforcement paradigm, consolidation may have been impaired via a stress-related mechanism.


Asunto(s)
Memoria/fisiología , Refuerzo en Psicología , Recompensa , Sueño , Aprendizaje Espacial/fisiología , Adolescente , Adulto , Humanos , Adulto Joven
7.
Blood Adv ; 8(21): 5653-5662, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39265169

RESUMEN

ABSTRACT: In a phase 1 study (NCT04000165), we established proof of concept for activating pyruvate kinase (PK) in sickle cell disease (SCD) as a viable antisickling therapy. AG-348 (mitapivat), a PK activator, increased adenosine triphosphate (ATP) and decreased 2,3-diphosphoglycerate levels while patients were on treatment, in line with the mechanism of the drug. We noted that the increased hemoglobin (Hb) persisted for 4 weeks after stopping AG-348 until the end of study (EOS). Here, we investigated the pathways modulated by activating PK that may contribute to the improved red blood cell (RBC) survival after AG-348 cessation. We evaluated frozen whole blood samples taken at multiple time points from patients in the phase 1 study, from which RBC ghosts were isolated and analyzed by western blotting for tyrosine phosphorylation of band 3 (Tyr-p-bd3), ankyrin-1, and intact (active) protein tyrosine phosphatase 1B (PTP1B) levels. We observed a significant dose-dependent decrease in mean Tyr-p-bd3 from baseline in the patients, accompanied by an increase in the levels of membrane-associated ankyrin-1 and intact PTP1B, all of which returned to near baseline by EOS. Because PTP1B is cleaved (inactivated) by intracellular Ca2+-dependent calpain, we next measured the effect of AG-348 on ATP production and calpain activity and the plasma membrane Ca2+ ATPase pump-mediated efflux kinetics in HbAA and HbSS erythrocytes. AG-348 treatment increased ATP levels, decreased calpain activity, and increased Ca2+ efflux. Altogether, our data indicate that ATP increase is a key mechanism underlying the increase in hemoglobin levels upon PK activation in SCD. This trial was registered at www.clinicaltrials.gov as #NCT04000165.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Eritrocitos , Piruvato Quinasa , Humanos , Eritrocitos/metabolismo , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Fosforilación , Piruvato Quinasa/metabolismo , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/sangre , Adenosina Trifosfato/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Ancirinas/metabolismo , Tirosina/metabolismo , Activación Enzimática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA