Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Lett ; 26(9): 1559-1571, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37345539

RESUMEN

Diverse specialised metabolites contributed to the success of vascular plants in colonising most terrestrial habitats. Understanding how distinct aspects of chemical diversity arise through heterogeneous environmental pressures can help us understand the effects of abiotic and biotic stress on plant evolution and community assembly. We examined highland and lowland willow species within a phylogenetic framework to test for trends in their chemical α-diversity (richness) and ß-diversity (variation among species sympatric in elevation). We show that differences in chemistry among willows growing at different elevations occur mainly through shifts in chemical ß-diversity and due to convergence or divergence among species sharing their elevation level. We also detect contrasting phylogenetic trends in concentration and α-diversity of metabolites in highland and lowland willow species. The resulting elevational patterns contribute to the chemical diversity of willows and suggest that variable selective pressure across ecological gradients may, more generally, underpin complex changes in plant chemistry.


Asunto(s)
Salix , Salix/genética , Filogenia , Ecosistema , Plantas , Biodiversidad
2.
Sci Total Environ ; 946: 174198, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914330

RESUMEN

The use of glyphosate-based herbicides (GBHs) to control weeds has increased exponentially in recent decades, and their residues and degradation products have been found in soils across the globe. GBH residues in soil have been shown to affect plant physiology and specialised metabolite biosynthesis, which, in turn, may impact plant resistance to biotic stressors. In a greenhouse study, we investigated the interactive effects between soil GBH residues and herbivory on the performance, phytohormone concentrations, phenolic compound concentrations and volatile organic compound (VOC) emissions of two woodland strawberry (Fragaria vesca) genotypes, which were classified as herbivore resistant and herbivore susceptible. Plants were subjected to herbivory by strawberry leaf beetle (Galerucella tenella) larvae, and to GBH residues by growing in soil collected from a field site with GBH treatments twice a year over the past eight years. Soil GBH residues reduced the belowground biomass of the susceptible genotype and the aboveground biomass of both woodland strawberry genotypes. Herbivory increased the belowground biomass of the resistant genotype and the root-shoot ratio of both genotypes. At the metabolite level, herbivory induced the emission of several VOCs. Jasmonic acid, abscisic acid and auxin concentrations were induced by herbivory, in contrast to salicylic acid, which was only induced by herbivory in combination with soil GBH residues in the resistant genotype. The concentrations of phenolic compounds were higher in the resistant genotype compared to the susceptible genotype and were induced by soil GBH residues in the resistant genotype. Our results indicate that soil GBH residues can differentially affect plant performance, phytohormone concentrations and phenolic compound concentrations under herbivore attack, in a genotype-dependent manner. Soil GBH altered plant responses to herbivory, which may impact plant resistance traits and species interactions. With ongoing agrochemical pollution, we need to consider plant cultivars with better resistance to polluted soils while maintaining plant resilience under challenging environmental conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA