Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(6): 980-994.e15, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35303428

RESUMEN

The emergence of hypervirulent clade 2 Clostridioides difficile is associated with severe symptoms and accounts for >20% of global infections. TcdB is a dominant virulence factor of C. difficile, and clade 2 strains exclusively express two TcdB variants (TcdB2 and TcdB4) that use unknown receptors distinct from the classic TcdB. Here, we performed CRISPR/Cas9 screens for TcdB4 and identified tissue factor pathway inhibitor (TFPI) as its receptor. Using cryo-EM, we determined a complex structure of the full-length TcdB4 with TFPI, defining a common receptor-binding region for TcdB. Residue variations within this region divide major TcdB variants into 2 classes: one recognizes Frizzled (FZD), and the other recognizes TFPI. TFPI is highly expressed in the intestinal glands, and recombinant TFPI protects the colonic epithelium from TcdB2/4. These findings establish TFPI as a colonic crypt receptor for TcdB from clade 2 C. difficile and reveal new mechanisms for CDI pathogenesis.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Clostridioides difficile/genética , Lipoproteínas/genética
2.
Am J Pathol ; 194(7): 1262-1271, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537933

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most fatal malignancies. Early diagnosis of HCC is crucial in reducing the risk for mortality. This study analyzed a panel of nine fusion transcripts in serum samples from 61 patients with HCC and 75 patients with non-HCC conditions, using TaqMan real-time quantitative RT-PCR. Seven of the nine fusions frequently detected in patients with HCC included: MAN2A1-FER (100%), SLC45A2-AMACR (62.3%), ZMPSTE24-ZMYM4 (62.3%), PTEN-NOLC1 (57.4%), CCNH-C5orf30 (55.7%), STAMBPL1-FAS (26.2%), and PCMTD1-SNTG1 (16.4%). Machine-learning models were constructed based on serum fusion-gene levels to predict HCC in the training cohort, using the leave-one-out cross-validation approach. One machine-learning model, called the four fusion genes logistic regression model (MAN2A1-FER≤40, CCNH-C5orf30≤38, SLC45A2-AMACR≤41, and PTEN-NOLC1≤40), produced accuracies of 91.5% and 83.3% in the training and testing cohorts, respectively. When serum α-fetal protein level was incorporated into the machine-learning model, a two fusion gene (MAN2A1-FER≤40, CCNH-C5orf30≤38) + α-fetal protein logistic regression model was found to generate an accuracy of 94.8% in the training cohort. The same model resulted in 95% accuracy in both the testing and combined cohorts. Cancer treatment was associated with reduced levels of most of the serum fusion transcripts. Serum fusion-gene machine-learning models may serve as important tools in screening for HCC and in monitoring the impact of HCC treatment.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , Aprendizaje Automático , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/sangre , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/sangre , Masculino , Femenino , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Adulto , Proteínas de Fusión Oncogénica/genética
3.
Am J Physiol Cell Physiol ; 326(3): C843-C849, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223929

RESUMEN

The phosphodiesterase enzymes mediate calcium-phosphate deposition in various tissues, although which enzymes are active in bone mineralization is unclear. Using gene array analysis, we found that a member of ecto-nucleotide pyrophosphatase/phosphodiesterase family, ENPP2, was strongly down-regulated with age in stromal stem cells that produce osteoblasts and make bone. This is in keeping with reduced bone formation in older animals. Thus, we hypothesized that ENPP2 is, at least in part, an early mediator of bone formation and thus may reflect reduced bone formation with age. Since ENPP2 has not previously been shown to have a role in osteoblast differentiation, we studied its effect on bone differentiation from stromal stem cells, verified by flow cytometry for stem cell antigens. In these remarkably uniform osteoblast precursors, we did transfection with ENPP2 DsiRNA, scrambled DsiRNA, or no transfection to make cells with normal or greatly reduced ENPP2 and analyzed osteoblast differentiation and mineralization. Osteoblast differentiation down-regulation was shown by alizarin red binding, silver staining, and alkaline phosphatase activity. Differences were confirmed by real-time PCR for alkaline phosphatase (ALPL), osteocalcin (BGLAP), and ENPP2 and by Western Blot for Enpp2. These were decreased, ∼50%, in osteoblasts transfected with ENPP2 DsiRNA compared with cells transfected with a scrambled DsiRNA or not transfected (control) cells. This finding is the first evidence for the role of ENPP2 in osteoblast differentiation and mineralization.NEW & NOTEWORTHY We report the discovery that the ecto-nucleotide pyrophosphatase/phosphodiesterase, ENPP2, is an important regulator of early differentiation of bone-forming osteoblasts.


Asunto(s)
Calcinosis , Osteogénesis , Pirofosfatasas , Animales , Fosfatasa Alcalina/genética , Diferenciación Celular , Hidrolasas Diéster Fosfóricas/genética
4.
Am J Pathol ; 193(4): 392-403, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36681188

RESUMEN

Prostate cancer remains one of the most fatal malignancies in men in the United States. Predicting the course of prostate cancer is challenging given that only a fraction of prostate cancer patients experience cancer recurrence after radical prostatectomy or radiation therapy. This study examined the expressions of 14 fusion genes in 607 prostate cancer samples from the University of Pittsburgh, Stanford University, and the University of Wisconsin-Madison. The profiling of 14 fusion genes was integrated with Gleason score of the primary prostate cancer and serum prostate-specific antigen level to develop machine-learning models to predict the recurrence of prostate cancer after radical prostatectomy. Machine-learning algorithms were developed by analysis of the data from the University of Pittsburgh cohort as a training set using the leave-one-out cross-validation method. These algorithms were then applied to the data set from the combined Stanford/Wisconsin cohort (testing set). The results showed that the addition of fusion gene profiling consistently improved the prediction accuracy rate of prostate cancer recurrence by Gleason score, serum prostate-specific antigen level, or a combination of both. These improvements occurred in both the training and testing cohorts and were corroborated by multiple models.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Masculino , Humanos , Antígeno Prostático Específico/genética , Recurrencia Local de Neoplasia/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Próstata/patología , Prostatectomía , Pronóstico
5.
BMC Pediatr ; 24(1): 182, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491417

RESUMEN

BACKGROUND: Biallelic pathogenic variants in PIP5K1C (MIM #606,102) lead to lethal congenital contractural syndrome 3 (LCCS3, MIM #611,369), a rare autosomal recessive genetic disorder characterized by small gestational age, severe multiple joint contractures and muscle atrophy, early death due to respiratory failure. Currently, 5 individuals with LCCS3 were reported and 5 pathogenic variants in PIP5K1C were identified. Here, we reported the two fetuses in a Chinese pedigree who displayed multiple joint contractures and other congenital anomalies. METHODS: Trio-based whole-exome sequencing (WES) was performed for the parents and the recent fetus to detect the genetic cause for fetus phenotype. RESULTS: A novel variant, NM_012398.3: c.949_952dup, p.S318Ifs*28 and a previously reported variant, c.688_689del, p.G230Qfs*114 (ClinVar database) in PIP5K1C, were detected in the individuals, and these variants were inherited from the mother and father, respectively. We described the features of multiple joint contractures in our fetuses, including bilateral talipes equinovarus, stiffness in the limbs, extended knees, persistently closed hands and overlapping fingers, which have not been delineated detailedly in previously reported LCCS3 individuals. Furthermore, novel phenotype, bilateral dilated lateral ventricles, was revealed in one fetus. CONCLUSIONS: These findings expanded the genetic variant spectrum of PIP5K1C and enriched the clinical features of LCCS3, which will help with the prenatal diagnosis and genetic counseling for this family.


Asunto(s)
Contractura , Atrofia Muscular , Femenino , Humanos , Embarazo , China , Contractura/genética , Linaje
6.
Plant Dis ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687570

RESUMEN

Casuarina equisetifolia is crucial in protecting coastal regions of China against typhoon attacks, but has faced a substantial challenge due to wilt disease caused by pathogens of the Ralstonia solanacearum species complex (RSSC). Although the initial outbreak of Casuarina wilt in 1970s was effectively controlled by disease-resistant C. equisetifolia varieties, the disease has recently re-emerged in coastal regions of Guangdong. In this study, we report the isolation, characterization, and comparative genomic analysis of 11 RSSC strains from diseased C. equisetifolia at various locations along the coast of Guangdong. Phylogenomic analysis showed that the strains were closely related and clustered with phylotype I strains previously isolated from peanuts. Single-gene based analysis further suggested these strains could be derived from strains present in Guangdong since the 1980s, indicating a historical context to their current pathogenicity. Casuarina-isolated strains exhibited notably higher virulence against C. equisetifolia and peanuts than representative RSSC strains GMI1000 and EP1, suggesting host-specific adaptations which possibly contributed to the recent outbreak. Comparative genomic analysis among RSSC strains revealed a largely conserved genome structure and high levels of conservation in gene clusters encoding extracellular polysaccharides biosynthesis, secretion systems, and quorum sensing regulatory systems. However, we also found a number of unique genes in the Casuarina-isolated strains that were absent in GMI1000 and EP1, and vice versa, pointing to potential genetic factors underpinning their differential virulence. These unique genes offer promising targets for future functional studies. Overall, our findings provide crucial insights into the RSSC pathogens causing Casuarina wilt in Guangdong, guiding future efforts in disease control and prevention.

7.
Am J Physiol Cell Physiol ; 325(3): C613-C622, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37519232

RESUMEN

We studied osteoblast bone mineral transport and matrix proteins as a function of age. In isolated bone marrow cells from long bones of young (3 or 4 mo) and old (18 or 19 mo) mice, age correlated with reduced mRNA of mineral transport proteins: alkaline phosphatase (ALP), ankylosis (ANK), the Cl-/H+ exchanger ClC3, and matrix proteins collagen 1 (Col1) and osteocalcin (BGLAP). Some proteins, including the neutral phosphate transporter2 (NPT2), were not reduced. These are predominately osteoblast proteins, but in mixed cell populations. Remarkably, in osteoblasts differentiated from preparations of stromal stem cells (SSCs) made from bone marrow cells in young and old mice, differentiated in vitro on perforated polyethylene terephthalate membranes, mRNA confirmed decreased expression with age for most transport-related and bone matrix proteins. Additional mRNAs in osteoblasts in vitro included ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), unchanged, and ENPP2, reduced with age. Decrease with age in ALP activity and protein by Western blot was also significant. Transport protein findings correlated with micro-computed tomography of lumbar vertebra, showing that trabecular bone of old mice is osteopenic relative to young mice, consistent with other studies. Pathway analysis of osteoblasts differentiated in vitro showed that cells from old animals had reduced Erk1/2 phosphorylation and decreased suppressor of mothers against decapentaplegic 2 (Smad2) mRNA, consistent with TGFß pathway, and reduced ß-catenin mRNA, consistent with WNT pathway regulation. Our results show that decline in bone density with age reflects selective changes, resulting effectively in a phenotype modification. Reduction of matrix and mineral transport protein expression with age is regulated by multiple signaling pathways.NEW & NOTEWORTHY This work for the first time showed that specific enzymes in bone mineral transport, and matrix synthesis proteins, in the epithelial-like bone-forming cell layer are downregulated with aging. Results were compared using cells extracted from long bones of young and old mice, or in essentially uniform osteoblasts differentiated from stromal stem cells in vitro. The age effect showed memory in the stromal stem cells, a remarkable finding.


Asunto(s)
Matriz Ósea , Osteoblastos , Ratones , Animales , Matriz Ósea/metabolismo , Microtomografía por Rayos X , Osteoblastos/metabolismo , Diferenciación Celular , Vía de Señalización Wnt , Minerales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Portadoras/metabolismo , Células Madre/metabolismo , Células Cultivadas
8.
Gastroenterology ; 163(2): 449-465, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35550144

RESUMEN

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (ICC) is a devastating liver cancer with extremely high intra- and inter-tumoral molecular heterogeneity, partly due to its diverse cellular origins. We investigated clinical relevance and the molecular mechanisms underlying hepatocyte (HC)-driven ICC development. METHODS: Expression of ICC driver genes in human diseased livers at risk for ICC development were examined. The sleeping beauty and hydrodynamic tail vein injection based Akt-NICD/YAP1 ICC model was used to investigate pathogenetic roles of SRY-box transcription factor 9 (SOX9) and yes-associated protein 1 (YAP1) in HC-driven ICC. We identified DNA methyltransferase 1 (DNMT1) as a YAP1 target, which was validated by loss- and gain-of-function studies, and its mechanism addressed by chromatin immunoprecipitation sequencing. RESULTS: Co-expression of AKT and Notch intracellular domain (NICD)/YAP1 in HC yielded ICC that represents 13% to 29% of clinical ICC. NICD independently regulates SOX9 and YAP1 and deletion of either, significantly delays ICC development. Yap1 or TEAD inhibition, but not Sox9 deletion, impairs HC-to-biliary epithelial cell (BEC) reprogramming. DNMT1 was discovered as a novel downstream effector of YAP1-TEAD complex that directs HC-to-BEC/ICC fate switch through the repression of HC-specific genes regulated by master regulators for HC differentiation, including hepatocyte nuclear factor 4 alpha, hepatocyte nuclear factor 1 alpha, and CCAAT/enhancer-binding protein alpha/beta. DNMT1 loss prevented NOTCH/YAP1-dependent HC-driven cholangiocarcinogenesis, and DNMT1 re-expression restored ICC development following TEAD repression. Co-expression of DNMT1 with AKT was sufficient to induce tumor development including ICC. DNMT1 was detected in a subset of HCs and dysplastic BECs in cholestatic human livers prone to ICC development. CONCLUSION: We identified a novel NOTCH-YAP1/TEAD-DNMT1 axis essential for HC-to-BEC/ICC conversion, which may be relevant in cholestasis-to-ICC pathogenesis in the clinic.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Colestasis , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/patología , Colestasis/patología , Hepatocitos/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Proteínas Señalizadoras YAP
9.
PLoS Pathog ; 17(1): e1009197, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507919

RESUMEN

Clostridioides difficile toxin B (TcdB) is a key virulence factor that causes C. difficile associated diseases (CDAD) including diarrhea and pseudomembranous colitis. TcdB can be divided into multiple subtypes/variants based on their sequence variations, of which four (TcdB1-4) are dominant types found in major epidemic isolates. Here, we find that these variants are highly diverse in their receptor preference: TcdB1 uses two known receptors CSPG4 and Frizzled (FZD) proteins, TcdB2 selectively uses CSPG4, TcdB3 prefers to use FZDs, whereas TcdB4 uses neither CSPG4 nor FZDs. By creating chimeric toxins and systematically switching residues between TcdB1 and TcdB3, we determine that regions in the N-terminal cysteine protease domain (CPD) are involved in CSPG4-recognition. We further evaluate the pathological effects induced by TcdB1-4 with a mouse intrarectal installation model. TcdB1 leads to the most severe overall symptoms, followed by TcdB2 and TcdB3. When comparing the TcdB2 and TcdB3, TcdB2 causes stronger oedema while TcdB3 induces severer inflammatory cell infiltration. These findings together demonstrate divergence in the receptor preference and further lead to colonic pathology for predominant TcdB subtypes.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Clostridioides difficile/metabolismo , Infecciones por Clostridium/patología , Receptores Frizzled/metabolismo , Mutación , Animales , Proteoglicanos Tipo Condroitín Sulfato/genética , Clostridioides difficile/genética , Infecciones por Clostridium/genética , Infecciones por Clostridium/metabolismo , Infecciones por Clostridium/microbiología , Epidemias , Femenino , Receptores Frizzled/genética , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
10.
Pharmacol Res ; 186: 106512, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36272639

RESUMEN

As a high mortality gynecological malignancy, most ovarian cancer patients experience refractory to standard chemotherapy, current immunotherapy or chemoimmunotherapy in clinic and clinical trials. The underlying mechanisms and biomarkers predictive of response for patient selection is quite urgent. In this study, we found that the level of tumor-expressed B7-H3 is positively correlated with the poorer prognosis in ovarian cancer patients. Therapeutically, in syngeneic mouse model of ovarian cancer, deficiency of tumor-expressed B7-H3 significantly potentiates the anti-tumor efficacy of paclitaxel or PD-L1 blockade monotherapy. However, combination of paclitaxel plus anti-PD-L1 has no synergistic effects than PD-L1 blockade monotherapy. Mechanistically, deficiency of tumor-expressed B7-H3 attenuates inflammatory cytokine IL-6 production, upregulates type I interferon (IFN) expression and increases paclitaxel-induced tumor cells apoptosis via caspase 3 activation pathway, resulting in reprogramming the tumor microenvironment including increasing the infiltration of effector T lymphocytes and decreasing the recruitment of Ly6G+CD11b+ myeloid-derived suppressor cells (MDSCs) in vivo. Collectively, these results demonstrate that deficiency of tumor-expressed B7-H3 enhances the anti-tumor efficacy of paclitaxel or PD-L1 blockade monotherapy rather than their combined chemoimmunotherapy in ovarian cancer, suggesting that B7-H3 may be a potential predictive biomarker for beneficial patient stratification and a candidate therapeutic target in ovarian cancer.


Asunto(s)
Antígenos B7 , Neoplasias Ováricas , Humanos , Ratones , Femenino , Animales , Antígenos B7/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Inmunoterapia , Microambiente Tumoral , Paclitaxel/farmacología , Paclitaxel/uso terapéutico
11.
J Opt Soc Am A Opt Image Sci Vis ; 39(5): 800-805, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36215440

RESUMEN

In this paper, a silica-based D-shaped circular photonic crystal fiber Bragg grating sensor for refractive index sensing is proposed theoretically. D-shaped fiber construction can effectively enhance the coupling effect between the guiding mode and external liquid analyte, which then causes a distinct shift in the typical reflection spectrum as the refractive index of the analyte varies. This design exhibits highly improved sensitivity of 487 nm/RIU in a large refractive index range from 1.30 to 1.40 compared with the previous fiber grating sensors. Study of the dependence of sensing performance on the structure parameters suggests that the resonance peak shifts towards longer wavelengths with the increased air-hole diameter of fiber, while it is almost immobile as the hole spacing and the number of air-hole layers change in a certain range. For the influence of the Bragg grating structure, results show that the resonance peak is not sensitive to the grating length, but linearly increases as the grating period expands. The effects of polishing depth and fiber preparation error on the sensor are also discussed in detail. This high-sensitivity sensor based on a D-shaped photonic crystal fiber and Bragg grating has great potential in biochemical detection, environmental monitoring, and medical sensing.

12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(11): 1211-1215, 2022 Nov 10.
Artículo en Zh | MEDLINE | ID: mdl-36317205

RESUMEN

OBJECTIVE: To investigate the clinical significance of miRNA-146, OX-LDL and ROS in patients with primary ovarian insufficiency (POI). METHODS: 100 patients with POI were prospectively collected and 100 women with normal ovarian function were randomly selected as control group. Serum miRNA-146 expression level was detected by qRT-PCR and serum OX-LDL and ROS expression levels were detected by ELISA. Ovarian granulosa cells of mouse were transfected with miRNA-146 mimics or inhibitors, and then treated with OX-LDL. Cell viability, colony forming ability, apoptosis rate and toll like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) of pathway proteins were evaluated respectively. RESULTS: Compared with control group, the expression level of miRNA-146 in POI group was significantly lower, the expression level of OX-LDL and ROS were significantly higher, and the ovarian volume and peak systolic blood flow velocity of ovarian artery were significantly decreased in POI group. Upregulation of miRNA-146 expression had a protective effect on OX-LDL injured ovarian granulosa cells, as evidenced by increased ovarian granulosa cell viability and colony number, reduced apoptosis, and downregulation of TLR4/NF-κB expression. CONCLUSION: miRNA-146 can target downstream TLR4/NF-κB signaling pathway affects oxidative stress and inflammatory response of POI induced by OX-LDL and ROS, and is expected to become a biomarker for early prediction of POI and a new target for treatment.


Asunto(s)
MicroARNs , Insuficiencia Ovárica Primaria , Humanos , Femenino , Ratones , Animales , Receptor Toll-Like 4/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Especies Reactivas de Oxígeno/farmacología , Insuficiencia Ovárica Primaria/genética , Apoptosis/genética
13.
Planta ; 254(2): 21, 2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34216276

RESUMEN

MAIN CONCLUSION: The possible candidate expansin genes, which may be important for strawberry fruit softening, have been identified in the diploid woodland strawberry Fragaria vesca and the octoploid cultivated strawberry Fragaria × ananassa and their transcriptional regulation by histone modifications has been studied. Softening process greatly affects fruit texture and shelf life. Expansins (EXPs) are a group of structural proteins participating in cell wall loosening, which break the hydrogen bonding between cellulose microfibrils and hemicelluloses. However, our knowledge on how EXP genes are regulated in fruit ripening, especially in non-climacteric fleshy fruits, is limited. Here, we have identified the EXP genes in both the octoploid cultivated strawberry (Fragaria × ananassa) and one of its diploid progenitor species, woodland strawberry (Fragaria vesca). We found that EXP proteins in F. × ananassa were structurally more divergent than the ones in F. vesca. Transcriptome data suggested that FaEXP88, FaEXP114, FveEXP11 and FveEXP33 were the four candidate EXP genes more likely involved in fruit softening, whose transcript levels dramatically increased when firmness decreased during fruit maturation. Phylogenetic analyses showed that those candidate genes were closely clustered, indicating the presence of homoeolog expression dominance in the EXP gene family in strawberry. Moreover, we have performed chromatin immunoprecipitation (ChIP) experiments to investigate the distribution of histone modifications along the promoters and genic regions of the EXP genes in F. vesca. ChIP data revealed that the transcript levels of EXP genes were highly correlated with the enrichment of H3K9/K14 acetylation and H3K27 tri-methylation. Collectively, this study identifies the key EXP genes involved in strawberry fruit softening and reveals a regulatory role of histone modifications in their transcriptional regulation, which would facilitate functional studies of the EXP genes in the ripening of non-climacteric fruits.


Asunto(s)
Fragaria , Fragaria/genética , Frutas , Regulación de la Expresión Génica de las Plantas , Código de Histonas , Filogenia
14.
Am J Pathol ; 190(7): 1427-1437, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32289287

RESUMEN

The activation of CD81 [the portal of entry of hepatitis C virus (HCV)] by agonistic antibody results in phosphorylation of Ezrin via Syk kinase and is associated with inactivation of the Hippo pathway and increase in yes-associated protein (Yap1). The opposite occurs when glypican-3 or E2 protein of HCV binds to CD81. Hepatocyte-specific glypican-3 transgenic mice have decreased levels of phosphorylated (p)-Ezrin (Thr567) and Yap, increased Hippo activity, and suppressed liver regeneration. The role of Ezrin in these processes has been speculated, but not proved. We show that Ezrin has a direct role in the regulation of Hippo pathway and Yap. Forced expression of plasmids expressing mutant Ezrin (T567D) that mimics p-Ezrin (Thr567) suppressed Hippo activity and activated Yap signaling in hepatocytes in vivo and enhanced activation of pathways of ß-catenin and leucine rich repeat containing G protein-coupled receptor 4 (LGR4) and LGR5 receptors. Hepatoma cell lines JM1 and JM2 have decreased CD81 expression and Hippo activity and up-regulated p-Ezrin (T567). NSC668394, a p-Ezrin (Thr567) antagonist, significantly decreased hepatoma cell proliferation. We additionally show that p-Ezrin (T567) is controlled by epidermal growth factor receptor and MET. Ezrin phosphorylation, mediated by CD81-associated Syk kinase, is directly involved in regulation of Hippo pathway, Yap levels, and growth of normal and neoplastic hepatocytes. The finding has mechanistic and potentially therapeutic applications in hepatocyte growth biology, hepatocellular carcinoma, and HCV pathogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Hepatocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular Tumoral , Proliferación Celular/fisiología , Humanos , Ratones , Fosforilación
15.
Pharmacol Res ; 172: 105815, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34391932

RESUMEN

Neurotrophic factors and their receptors have been identified to promote tumor progression. GFRα1, the receptor for glial cell line-derived neurotrophic factor (GDNF), has been demonstrated to be predominantly expressed in adult liver tissue. Our preliminary data showed that GFRα1 is significantly downregulated in hepatocellular carcinoma (HCC) tissue, compared to the matched non-neoplastic tissue. However, the role of GFRα1 in HCC progression remains unknown. Here we found that the expression of GFRα1 in HCC tissue is inversely correlated with the poorer prognosis of HCC patients. Silencing of GFRα1 expression markedly enhances HCC cell growth, tumor metastasis, as well as shortens the survival of HCC tumor-bearing mice. Forced expression of GFRα1 in HCC cells significantly reverses the tumor-promoting effects of GFRα1 silencing, and AAV8-mediated GFRα1 transfection in HCC tumor tissues significantly impedes tumor growth and prolongs the survival of HCC tumor-bearing mice. These results are also verified in vivo in GFRα1 knock-out mice model, with increased DEN-induced HCC carcinogenesis. Mechanistically, GFRα1 could inhibit epithelial-to-mesenchymal transition (EMT) of HCC cells, by upregulating expression of Claudin-1 and ZO-1. Of note, silencing of GFRα1 expression promotes oxaliplatin-mediated HCC cell apoptosis resulting in prolonged survival of HCC-bearing mice, and forced expression of GFRα1 markedly increased oxaliplatin resistance of HCC cells. These results demonstrate that deficiency of GFRα1 promotes HCC progression but enhances chemotherapeutic anti-tumor efficacy, suggesting that GFRα1 may be a candidate prognostic biomarker and a potential therapeutic target in HCC.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Neoplasias Hepáticas , Oxaliplatino/uso terapéutico , Animales , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Progresión de la Enfermedad , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Ratones Desnudos , Ratones Transgénicos , Oxaliplatino/farmacología , Pronóstico , Resultado del Tratamiento
16.
J Am Soc Nephrol ; 31(7): 1496-1508, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32424001

RESUMEN

BACKGROUND: Studies have suggested that estrogens may protect mice from AKI. Estrogen sulfotransferase (SULT1E1, or EST) plays an important role in estrogen homeostasis by sulfonating and deactivating estrogens, but studies on the role of SULT1E1 in AKI are lacking. METHODS: We used the renal ischemia-reperfusion model to investigate the role of SULT1E1 in AKI. We subjected wild-type mice, Sult1e1 knockout mice, and Sult1e1 knockout mice with liver-specific reconstitution of SULT1E1 expression to bilateral renal ischemia-reperfusion or sham surgery, either in the absence or presence of gonadectomy. We assessed relevant biochemical, histologic, and gene expression markers of kidney injury. We also used wild-type mice treated with the SULT1E1 inhibitor triclosan to determine the effect of pharmacologic inhibition of SULT1E1 on AKI. RESULTS: AKI induced the expression of Sult1e1 in a tissue-specific and sex-specific manner. It induced expression of Sult1e1 in the liver in both male and female mice, but Sult1e1 induction in the kidney occurred only in male mice. Genetic knockout or pharmacologic inhibition of Sult1e1 protected mice of both sexes from AKI, independent of the presence of sex hormones. Instead, a gene profiling analysis indicated that the renoprotective effect was associated with increased vitamin D receptor signaling. Liver-specific transgenic reconstitution of SULT1E1 in Sult1e1 knockout mice abolished the protection in male mice but not in female mice, indicating that Sult1e1's effect on AKI was also tissue-specific and sex-specific. CONCLUSIONS: SULT1E1 appears to have a novel function in the pathogenesis of AKI. Our findings suggest that inhibitors of SULT1E1 might have therapeutic utility in the clinical management of AKI.


Asunto(s)
Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Hígado/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Lesión Renal Aguda/etiología , Animales , Calcitriol/farmacología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Orquiectomía , Ovariectomía , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Daño por Reperfusión/complicaciones , Factores Sexuales , Transducción de Señal , Sulfotransferasas/antagonistas & inhibidores , Triclosán/farmacología
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(9): 861-864, 2021 Sep 10.
Artículo en Zh | MEDLINE | ID: mdl-34487531

RESUMEN

OBJECTIVE: To explore the genotype-phenotype correlation in a child with Kabuki syndrome type 1 (KS1) caused by a mosaic frameshift variant of KMT2D gene. METHODS: Trio-based whole exome sequencing (WES) was carried for the patient and her parents. Candidate variant was verified by Sanger sequencing. RESULTS: The proband, a 3-year-and-2-month-old Chinese girl, presented with distinctive facial features, cognitive impairment, mild developmental delay, dermatoglyphic abnormalities, minor skeletal anomalies, ventricular septal defect, and autistic behavior. Trio-based WES revealed that the proband has carried a de novo mosaic frameshit variant of the KMT2D gene, namely NM_003482.3:c.13058delG (p.Pro4353Argfs*31) (GRCh37/hg19), for which the mosaicism rate was close to 21%. The variant was unreported previously and was confirmed by Sanger sequencing. Chromosomal microarray analysis (CMA) has revealed no pathogenic or likely pathogenic copy number variations. Compared with previously reported cases, our patient has presented obvious behavior anomalies including autism, anxiety and sleep problems, which were rarely reported. CONCLUSION: This study has expanded the spectrum of KMT2D gene variants, enriched the clinical phenotypes of KS1, and facilitated genetic counseling for the family.


Asunto(s)
Variaciones en el Número de Copia de ADN , Proteínas de Unión al ADN , Anomalías Múltiples , China , Proteínas de Unión al ADN/genética , Cara/anomalías , Femenino , Enfermedades Hematológicas , Humanos , Lactante , Proteínas de Neoplasias/genética , Fenotipo , Enfermedades Vestibulares
18.
Opt Express ; 28(3): 3136-3146, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32121987

RESUMEN

We theoretically propose a dual-channel bistable switch based on a monolayer Z-shaped graphene nanoribbon nanoresonator (NR) coupled to a metal nanoparticle (MNP). We show that the bistable nonlinear absorption response can be realized due to a competition and combination of the exciton-plasmon and exciton-phonon interactions. We map out two-dimensional and three-dimensional bistability phase diagrams, which reveal clearly the dynamical evolution of the roles played by these two interactions in managing optical bistability (OB) at all stages. Specifically, the bistable switch proposed can be controlled via a single channel or dual channels by only adjusting the intensity or frequency of the pump field. In/outside these channels, the switch will be turned on/off. The results obtained here not only can be employed to measure precisely the distance between the MNP and the NR but also provide promising applications in optical switching and optical storage.

19.
Respir Res ; 21(1): 314, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243228

RESUMEN

BACKGROUND: Previous studies have focused on the clinical characteristics of hospitalized patients with the novel 2019 coronavirus disease (COVID-19). Limited data are available for convalescent patients. This study aimed to evaluate the clinical characteristics of discharged COVID-19 patients. METHODS: In this retrospective study, we extracted data for 134 convalescent patients with COVID-19 in Guizhou Provincial Staff Hospital from February 15 to March 31, 2020. Cases were analyzed on the basis of demographic, clinical, and laboratory data as well as radiological features. RESULTS: Of 134 convalescent patients with COVID-19, 19 (14.2%) were severe cases, while 115 (85.8%) were non-severe cases. The median patient age was 33 years (IQR, 21.8 to 46.3), and the cohort included 69 men and 65 women. Compared with non-severe cases, severe patients were older and had more chronic comorbidities, especially hypertension, diabetes, and thyroid disease (P < 0.05). Leukopenia was present in 32.1% of the convalescent patients and lymphocytopenia was present in 6.7%, both of which were more common in severe patients. 48 (35.8%) of discharged patients had elevated levels of alanine aminotransferase, which was more common in adults than in children (40.2% vs 13.6%, P = 0.018). A normal chest CT was found in 61 (45.5%) patients during rehabilitation. Severe patients had more ground-glass opacity, bilateral patchy shadowing, and fibrosis. No significant differences were observed in the positive rate of IgG and/or IgM antibodies between severe and non-severe patients. CONCLUSION: Leukopenia, lymphopenia, ground-glass opacity, and fibrosis are common in discharged severe COVID-19 patients, and liver injury is common in discharged adult patients. We suggest physicians develop follow-up treatment plans based on the different clinical characteristics of convalescent patients.


Asunto(s)
COVID-19/diagnóstico , Convalecencia , Adulto , Formación de Anticuerpos , COVID-19/fisiopatología , Niño , Preescolar , China , Comorbilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Alta del Paciente , Estudios Retrospectivos , Adulto Joven
20.
Am J Pathol ; 188(8): 1895-1909, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29920228

RESUMEN

Hepatoblastoma (HB) is the most common pediatric liver malignant tumor. Previously, we reported co-activation of ß-catenin and Yes-associated protein-1 (YAP1) in 80% of HB. Hepatic co-expression of active ß-catenin and YAP1 via sleeping beauty transposon/transposase and hydrodynamic tail vein injection led to HB development in mice. Here, we identify lipocalin 2 (Lcn2) as a target of ß-catenin and YAP1 in HB and show that serum Lcn2 values positively correlated with tumor burden. Lcn2 was strongly expressed in HB tumor cells in our mouse model. A tissue array of 62 HB cases showed highest LCN2 expression in embryonal and lowest in fetal, blastemal, and small cell undifferentiated forms of HB. Knockdown of LCN2 in HB cells had no effect on cell proliferation but reduced NF-κB reporter activity. Next, liver-specific Lcn2 knockout (KO) mice were generated. No difference in tumor burden was observed between Lcn2 KO mice and wild-type littermate controls after sleeping beauty transposon/transposase and hydrodynamic tail vein injection delivery of active YAP1 and ß-catenin, although Lcn2 KO mice with HB lacked any serum Lcn2 elevation, demonstrating that transformed hepatocytes are the source of serum Lcn2. More blastemal areas and inflammation were observed within HB in Lcn2 KO compared with wild-type tumors. In conclusion, Lcn2 expressed in hepatocytes appears to be dispensable for the pathogenesis of HB. However, transformed hepatocytes secrete serum Lcn2, making Lcn2 a valuable biomarker for HB.


Asunto(s)
Biomarcadores de Tumor/sangre , Hepatoblastoma/patología , Hepatocitos/patología , Lipocalina 2/sangre , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Proliferación Celular , Hepatoblastoma/sangre , Hepatocitos/metabolismo , Humanos , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Fosfoproteínas/metabolismo , Transducción de Señal , Factores de Transcripción , Carga Tumoral , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA