Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Phys Chem Chem Phys ; 26(33): 22189-22207, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39129480

RESUMEN

Electrolyte decomposition and subsequent solid electrolyte interphase (SEI) are considered to be the primary cause of degradation of lithium batteries. We investigate the multiple factors that can affect the reductive decomposition pathways of ethylene carbonate (EC) and SEI formation using reactive molecular dynamics. Our simulations reveal the effects of lithium concentration, simulation temperature, and the imposition of external electric field on the decomposition reaction and pathways, respectively. The comparative results reveal the increasing lithium concentration has a strong influence on EC decomposition and its pathway at each temperature. Also, the increasing temperature and imposition of an external electric field have been found to non-electrochemically and electrochemically modify the decomposition pathways of EC. This study provides insights into not only the SEI chemistry in Li-ion batteries but also that in lithium metal batteries, which can potentially contribute to the design and optimisation of future novel battery materials and electrolyte solutions.

2.
Phys Chem Chem Phys ; 25(35): 23717-23727, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37614182

RESUMEN

Carbon dioxide (CO2) electroreduction by metal-nitrogen-doped carbon (MNC) catalysts is a promising and efficient method to mitigate global warming by converting CO2 molecules to value-added chemicals. In this research, we systematically studied the behaviours of single and dual-atom Cu catalysts during the CO2 electroreduction process using density functional theory (DFT) calculations. Two structures, i.e., CuNC-4-pyridine and CuCuNC-4a, were found to be beneficial for C2 chemical generation with relatively high stabilities. Subsequently, we explored the detailed pathways of key products (CO, HCOOH, CH3OH, CH4, C2H6O, C2H4 and C2H6) during CO2 electroreduction on CuNC-4-pyridine and CuCuNC-4a. This research reveals the mechanisms of key product formation during CO2 electroreduction on CuNC-4-pyridine and CuCuNC-4a, which would provide important insights to guide the design of MNC catalysts with low limiting potentials and high product selectivity.

3.
Soft Matter ; 18(15): 2968-2978, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35352084

RESUMEN

We present a molecular dynamics simulation study on the effects of sodium chloride addition on stability of a nitrogen bulk nanobubble in water. We find that the lifetime of the bulk nanobubble is extended in the presence of NaCl and reveal the underlying mechanisms. We do not observe spontaneous accumulation or specific arrangement of ions/charges around the nanobubble. Importantly, we quantitatively show that the N2 molecule selectively diffuses through water molecules rather than pass by any ions after it leaves the nanobubble due to the much weaker water-water interactions than ion-water interactions. The strong ion-water interactions cause hydration effects and disrupt hydrogen bond networks in water, which leave fewer favorable paths for the diffusion of N2 molecules, and by that reduce the degree of freedom in the dissolution of the nanobubble and prolong its lifetime. These results demonstrate that the hydration of ions plays an important role in stability of the bulk nanobubble by affecting the dynamics of hydrogen bonds and the diffusion properties of the system, which further confirm and interpret the selective diffusion path of N2 molecules and the extension of lifetime of the nanobubble. The new atomistic insights obtained from the present research could potentially benefit the practical application of bulk nanobubbles.

4.
Biophys J ; 120(15): 3180-3191, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34197803

RESUMEN

Vascular endothelial cells and circulating red blood cell (RBC) surfaces are both covered by a layer of bushy glycocalyx. The interplay between these glycocalyx layers is hardly measurable and insufficiently understood. This study aims to investigate and qualify the possible interactions between the glycocalyces of RBCs and endothelial cells using mathematical modeling and numerical simulation. Dissipative particle dynamics (DPD) simulations are conducted to investigate the response of the endothelial glycocalyx (EG) to varying ambient conditions. A two-compartment model including EG and flow and a three-compartment model comprising EG, RBC glycocalyx, and flow are established. The two-compartment analysis shows that a relatively fast flow is associated with a predominantly bending motion of the EG, whereas oscillatory motions are predominant in a relatively slow flow. Results show that circulating RBCs cause the contactless deformation of EG. Its deformation is dependent on the chain layout, chain length, bending stiffness, RBC-to-EG distance, and RBC velocities. Specifically, shorter EG chains or RBC-to-EG distance leads to greater relative deflections of EG. Deformation of EG is enhanced when the EG chains are rarefied or RBCs move faster. The bending stiffness maintains stretching conformation of EG. Moreover, a compact EG chain layout and shedding EG chains disturb the neighboring flow field, causing disordered flow velocity distributions. In contrast, the movement of EG chains on RBC surfaces exerts a marginal driving force on RBCs. The DPD method is used for the first time, to our knowledge, in the three-compartment system to explore the cross talk between EG and RBC glycocalyx. This study suggests that RBCs drive the EG deformation via the near-field flow, whereas marginal propulsion of RBCs by the EG is observed. These new, to our knowledge, findings provide a new angle to understand the roles of glycocalyx in mechanotransduction and microvascular permeability and their perturbations under idealized pathophysiologic conditions associated with EG degradation.


Asunto(s)
Células Endoteliales , Glicocálix , Simulación por Computador , Eritrocitos , Mecanotransducción Celular
5.
Philos Trans A Math Phys Eng Sci ; 379(2208): 20200397, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34455840

RESUMEN

In this work, we develop a unified lattice Boltzmann model (ULBM) framework that can seamlessly integrate the widely used lattice Boltzmann collision operators, including the Bhatnagar-Gross-Krook or single-relation-time, multiple-relaxation-time, central-moment or cascaded lattice Boltzmann method and multiple entropic operators (KBC). Such a framework clarifies the relations among the existing collision operators and greatly facilitates model comparison and development as well as coding. Importantly, any LB model or treatment constructed for a specific collision operator could be easily adopted by other operators. We demonstrate the flexibility and power of the ULBM framework through three multiphase flow problems: the rheology of an emulsion, splashing of a droplet on a liquid film and dynamics of pool boiling. Further exploration of ULBM for a wide variety of phenomena would be both realistic and beneficial, making the LBM more accessible to non-specialists. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.

6.
Soft Matter ; 16(3): 651-658, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31802091

RESUMEN

The rheology of pressure-driven flows of two-dimensional dense monodisperse emulsions in neutral wetting microchannels is investigated by means of mesoscopic lattice Boltzmann simulations, capable of handling large collections of droplets, in the order of several hundreds. The simulations reveal that the fluidization of the emulsion proceeds through a sequence of discrete steps, characterized by yielding events whereby layers of droplets start rolling over each other, thus leading to sudden drops of the relative effective viscosity. It is shown that such discrete fluidization is robust against loss of confinement, namely it persists also in the regime of small ratios of the droplet diameter over the microchannel width. We also develop a simple phenomenological model which predicts a linear relation between the relative effective viscosity of the emulsion and the product of the confinement parameter (global size of the device over droplet radius) and the viscosity ratio between the disperse and continuous phases. The model shows excellent agreement with the numerical simulations. The present work offers new insights to enable the design of microfluidic scaffolds for tissue engineering applications and paves the way to detailed rheological studies of soft-glassy materials in complex geometries.

7.
J Chem Phys ; 153(10): 105102, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32933268

RESUMEN

In the present research, the sodium ion transport across the endothelial glycocalyx layer (EGL) under an imposed electric field is investigated, for the first time, using a series of molecular dynamics simulations. The electric field is perpendicularly imposed on the EGL with varying strengths. The sodium ion molarity difference between the inner and outer layers of EGL, Δc, is used to quantify the sodium transport in the presence of the negatively charged glycocalyx sugar chains. Results suggest that a weak electric field increases Δc, regardless of whether the electric field is imposed perpendicularly inward or outward. By contrast, a strong electric field drives sodium ions to travel in the same orientation as the electric field. Scrutiny of the charge distribution of the glycocalyx sugar chains suggests that the electric field modifies the spatial layouts of glycocalyx atoms as it drives the transport of sodium ions. The modification in glycocalyx layouts further changes the inter-molecular interactions between glycocalyx sugar chains and sodium ions, thereby limiting the electric field control of ion transport. The sodium ions, in turn, alter the apparent bending stiffness of glycocalyx. Moreover, the negative charges of the glycocalyx sugar chains play an important role in maintaining structural stability of endothelial glycocalyx. Based on the findings, a hypothesis is proposed regarding the existence of a strength threshold of the electric field in controlling charged particles in the endothelium, which offers an alternative explanation for contrasting results in previous experimental observations.


Asunto(s)
Endotelio/metabolismo , Glicocálix/metabolismo , Sodio/metabolismo , Sistema Cardiovascular/metabolismo , Electricidad , Humanos , Transporte Iónico , Modelos Biológicos , Simulación de Dinámica Molecular
8.
Am J Physiol Heart Circ Physiol ; 317(1): H104-H113, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31026187

RESUMEN

Ion transport through the endothelial glycocalyx layer is closely associated with many vascular diseases. Clarification of ion behaviors around the endothelial glycocalyx layer under varying circumstances will benefit pathologies related to cardiovascular and renal diseases. In this research, a series of large-scale molecular dynamics simulations are conducted to study the response of ion transport to the changing blood flow velocity and the shedding of endothelial glycocalyx sugar chains. Results indicate that blood flow promotes the outward Na+ transport from the near-membrane region to the lumen via the endothelial glycocalyx layer. Scrutiny of sugar-chain dynamics and their interactions with Na+ suggests that corner conformation of endothelial glycocalyx sugar chains confines the movement of the Na+, whereas stretching conformation facilitates the motion of Na+ ions. The flow impact on ion transport of Na+ is nonlinear. Based on the findings, the Starling principle and its revised version, which are prevailingly used to predict the ion transport of the endothelial glycocalyx layer, are further improved. An estimation based on the further revised Starling principle indicates that physiological flow changes the osmotic part of transendothelial water flux by 8% compared with the stationary situation. NEW & NOTEWORTHY The biophysical roles of negatively charged oligosaccharides of the endothelial glycocalyx have gained increasing attention due to their importance in regulating microvascular fluid exchange. The Starling principle and its revisions are at the heart of the understanding of fluid homeostasis in the periphery. Here, the blood flow changes the conformations of glycocalyx sugar chains, thereby influencing availability of Na+ for transport. Based on the findings, the Starling principle and its revision are further improved.


Asunto(s)
Permeabilidad Capilar , Células Endoteliales/metabolismo , Glicocálix/metabolismo , Microvasos/metabolismo , Modelos Cardiovasculares , Simulación de Dinámica Molecular , Sodio/metabolismo , Animales , Velocidad del Flujo Sanguíneo , Conformación de Carbohidratos , Humanos , Presión Hidrostática , Transporte Iónico , Cinética , Microvasos/citología , Ósmosis , Relación Estructura-Actividad
9.
Langmuir ; 35(27): 8896-8902, 2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31244244

RESUMEN

Through molecular dynamics simulations, head-on collision processes of two identical droplets with a diameter of 10.9 nm are elaborately scrutinized over a wide range of impact Weber numbers (from 6.7 to 1307) both in vacuum and in an ambient of nitrogen gas. As the impact Weber number exceeds a certain critical value, a hole or multiple holes in apparently random locations are observed in the disklike structure formed by two colliding droplets. We name this a new "hole regime" of droplet collisions, which has not yet been reported in previous studies. As the impact Weber number increases, the number of holes increases. The hole or holes may disappear unless a second critical impact Weber number is exceeded, when the merged droplet is likely to experience dramatic shattering. It is also found that the existence of ambient gas provides a "cushion effect" which resists droplet deformation, thus delaying or even preventing the appearance of hole formation and shattering regimes. Moreover, increasing ambient pressure suppresses hole formation. A model based on energy balance is proposed to predict droplet behaviors, which provides a more accurate estimate of the maximum spreading factor compared to previous models. Finally, we further extend the current nanoscale droplet collision regime map and analyze the similarities and dissimilarities between nano- and macroscale droplet collision. Our study extends the current understanding on nanodroplet collisions.

10.
Langmuir ; 35(26): 8716-8725, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31244260

RESUMEN

Enhanced recovery of shale gas with CO2 injection has attracted extensive attention as it combines the advantages of improved efficiency of shale gas recovery and reduced greenhouse gas emissions via CO2 geological sequestration. On the other hand, the microscopic mechanism of enhanced shale gas recovery with CO2 injection and the influence of the subsurface water confined in the shale nanopores remain ambiguous. Here, we use grand canonical Monte Carlo (GCMC) simulations to investigate the effect of moisture on the shale gas recovery and CO2 sequestration by calculating the adsorption of CH4 and CO2 in dry and moist kerogen slit pores. Simulation results indicate that water accumulates in the form of clusters in the middle of the kerogen slit pore. Formation of water clusters in kerogen slit pores reduces pore filling by methane molecules, resulting in a decrease in the methane sorption capacity. For the sorption of CH4/CO2 binary mixtures in kerogen slit pores, the CH4 sorption capacity decreases as the moisture content increases, whereas the effect of moisture on CO2 sorption capacity is related to its mole fraction in the CH4/CO2 binary mixture. Furthermore, we propose a reference route for shale gas recovery and find that the pressure drawdown and CO2 injection exhibit different mechanisms for gas recovery. Pressure drawdown mainly extracts the CH4 molecules distributed in the middle of kerogen slit pores, while CO2 injection recovers CH4 molecules from the adsorption layer. When the water content increases, the recovery ratio of the pressure drawdown declines, while that of CO2 injection increases, especially in the first stage of CO2 injection. The CO2 sequestration efficiency is higher under higher water content. These findings provide the theoretical foundation for optimization of the shale gas recovery process, as well as effective CO2 sequestration in depleted gas reservoirs.

11.
Phys Chem Chem Phys ; 21(7): 3849-3856, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30698583

RESUMEN

Polycyclic aromatic hydrocarbon (PAH) dimers are important intermediates in combustion and soot formation. The scattering dynamics of gaseous molecules colliding with PAH dimers and the subsequent PAH dimer stability are investigated by performing molecular dynamics (MD) simulations. Effects of properties of the surrounding gaseous molecules and PAH dimers as well as temperature are investigated in this study. Depending on the residence time of N2 molecules trapped by the PAH dimers, two scattering types, that is, specular scattering and inelastic scattering, have been observed, which is correlated to the temperature and the type of the PAH dimer. Specifically, specular scattering preferentially takes place at high temperatures on small PAH dimers, while inelastic scattering tends to happen at low temperatures on large PAH dimers. During collision, energy transfer between the gaseous molecule and the PAH dimer changes the thermodynamic stability of the PAH dimer. Statistical analysis indicates that the decomposition rate of a PAH dimer to PAH monomers is sensitive to temperature and the PAH dimer type. Furthermore, effects of the gaseous molecule type on the PAH dimer stability are considered. The molecular mass of the colliding gaseous molecule is a key factor in determining the PAH dimer stability, as heavier gaseous molecules are more effective in promoting the PAH dimer decomposition. Results from this study indicate that collisions with gaseous molecules decrease the PAH dimer stability, while increasing the PAH dimer size and decreasing the collision temperature both decrease the decomposition rate of the PAH dimer.

12.
J Phys Chem A ; 122(44): 8701-8708, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30351104

RESUMEN

This work presents a dynamic and kinetic study on the dimerization of polycyclic aromatic hydrocarbon (PAH) molecules and radicals under flame conditions using reactive force field (ReaxFF) molecular dynamics (MD) simulations. The accuracy of the ReaxFF force field is evaluated through comparing with quantum chemistry (QC) calculations of the barrier heights and species concentrations of PAHs reacting with H and OH radicals. A series of homobinary collisions between PAH molecules/radicals are performed to reveal the influence of temperature, molecular size, PAH composition, and the number of radical sites on the dynamics and kinetics of PAH dimerization. Instead of directly forming the strong covalent bonds, the majority of the binary collisions between PAH radicals are bound with weak intermolecular interactions. Effects of oxygen on PAH radical dimerization are also investigated, which indicates that the oxygenated PAH radicals are less likely to contribute to soot nucleation. In addition, the temperature, PAH characteristic, and radical site dependent collision efficiency for PAH radical-radical combinations is extracted from this study.

13.
Nanoscale ; 16(34): 16119-16126, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39101367

RESUMEN

Microexplosion has been extensively studied in the context of fuel spray and droplet evaporation in engines, while its existence, impact and atomistic insight have rarely been explored in the context of flame synthesis of nanoparticles. In this study, reactive force-field molecular dynamics simulations are performed to elucidate the mechanisms of pyrolysis and oxidation of an isolated lithium nitrate nanodroplet. During the pyrolysis process, the nucleation and growth of a bubble are observed inside the droplet, which should be ascribed to the release of nitrogen and oxygen gases from the decomposition of lithium nitrate, ultimately leading to rapid droplet fragmentation (microexplosion). To demonstrate the role of microexplosion with various intensities, via altering ambient temperature and addition of oxygen gas into the environment, thorough analyses of bond reactions, droplet morphology and compounds of the synthesized lithium nanoparticles are carried out. With elevated ambient temperature, the droplet substantially expands due to bubble growth and the time required for droplet disruption is shortened, which implies the enhanced strength of microexplosion. Simultaneously, the connection between the lithium and other atoms becomes weak, as evidenced by a decrease in the number of lithium bonds. These give rise to a reduction in the quantity of large-sized lithium agglomerates and simultaneously an increase in the amount of fine lithium nanoparticles. To further clarify the reaction mechanism for a lithium-containing droplet under various ambient conditions, three reaction modes, i.e., core-shell diffusion-controlled, microexplosion-accelerated and microexplosion-dominated, are distinguished based on the intensity of microexplosion and the quality of synthesized lithium nanoparticles. Fine lithium-containing nanoparticles are expected to be produced in the microexplosion-dominated mode under high temperature conditions.

14.
ACS Omega ; 9(19): 21082-21088, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38764663

RESUMEN

Chemical looping combustion (CLC) is a promising and novel technology for carbon dioxide (CO2) capture with a relatively low energy consumption and cost. CuO, one of the most attractive oxygen carriers (OCs) for carbon dioxide (CO) oxidation, suffers from sintering and agglomeration during the reduction process. Applying an electric field (EF) may promote the CO oxidation process on the CuO surface, which could mitigate sintering and agglomeration by decreasing operating temperatures with negligible combustion efficiency loss. This study performs density functional theory (DFT) simulations to investigate the effects of EF on the oxidation of CO on the CuO (111) surface. The results indicate that both the orientation and strength of the EF can significantly affect the oxidation characteristics of CO on the CuO (111) surface such as total reaction energy, energy barriers of reactions, CO adsorption, and CO2 desorption. For the first time, this study reveals the role of EF in enhancing CO oxidation through CLC processes via first-principle calculations. Such findings could provide new strategies to improve the performance of CLC processes.

15.
Nanoscale ; 15(12): 5877-5890, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36876507

RESUMEN

Flame spray pyrolysis (FSP) provides an advantageous synthetic route for LiNi1-x-yCoxMnyO2 (NCM) materials, which are one of the most practical and promising cathode materials for Li-ion batteries. However, a detailed understanding of the NCM nanoparticle formation mechanisms through FSP is lacking. To shed light on the evaporation of NCM precursor droplets in FSP, in this work, we employ classical molecular dynamics (MD) simulations to explore the dynamic evaporation process of nanodroplets composed of metal nitrates (including LiNO3, Ni(NO3)2, Co(NO3)2, and Mn(NO3)2 as solutes) and water (as solvent) from a microscopic point of view. Quantitative analysis on the evaporation process has been performed by tracking the temporal evolution of key features including the radial distribution of mass density, the radial distribution of number density of metal ions, droplet diameter, and coordination number (CN) of metal ions with oxygen atoms. Our MD simulation results show that during the evaporation of an MNO3-containing (M = Li, Ni, Co, or Mn) nanodroplet, Ni2+, Co2+, and Mn2+ will precipitate on the droplet surface, forming a solvent-core-solute-shell structure; whereas the distribution of Li+ within the evaporating LiNO3-containing droplet is more even due to the high diffusivity of Li+ compared with other metal ions. For the evaporation of a Ni(NO3)2- or Co(NO3)2-containing nanodroplet, the temporal evolution of the CN of M-OW (M = Ni or Co; OW represents O atoms from water) suggests a "free H2O" evaporation stage, during which both CN of M-OW and CN of M-ON are unchanged with time. Evaporation rate constants at various conditions are extracted by making analogy to the classical D2 law for droplet evaporation. Unlike Ni or Co, CN of Mn-OW keeps changing with time, yet the temporal evolution of the squared droplet diameter indicates the evaporation rate for a Ni(NO3)2-, Co(NO3)2-, or Mn(NO3)2-containing droplet is hardly affected by the different types of the metal ions.

16.
Environ Technol ; 33(10-12): 1175-82, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22856287

RESUMEN

The influence of the partial pressure of carbon dioxide (CO2) on the thermal decomposition process of a calcite (CI) and a dolomite (DP) is investigated in this paper using a thermogravimetric analyser. The tests were non-isothermal at five different heating rates in dynamic atmosphere of air with 0% and 15% carbon dioxide (CO2). In the atmosphere without CO2, the average activation energies (E(alpha)) were 197.4 kJ mol(-1) and 188.1 kJ mol(-1) for CI and DP, respectively. For the DP with 15% CO2, two decomposition steps were observed, indicating a change of mechanism. The values of E(alpha) for 15% CO2 were 378.7 kJ mol(-1) for the CI, and 299.8 kJ mol(-1) (first decomposition) and 453.4 kJ mol(-1) (second decomposition) for the DP, showing that the determination of E(alpha) for DP should in this case be considered separately in those two distinct regions. The results obtained in this study are relevant to understanding the behaviour changes in the thermal decomposition of limestones with CO2 partial pressure when applied to technologies, such as carbon capture and storage (CCS), in which carbon dioxide is present in high concentrations.


Asunto(s)
Carbonato de Calcio/química , Dióxido de Carbono/química , Magnesio/química , Calor , Cinética , Termogravimetría
17.
Phys Rev E ; 105(2-2): 025308, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35291096

RESUMEN

Modeling liquid-vapor phase change using the lattice Boltzmann (LB) method has attracted significant attention in recent years. In this paper, we propose an improved three-dimensional thermal multiphase LB model for simulating liquid-vapor phase change. The proposed model has the following features. First, it is still within the framework of the thermal LB method using a temperature distribution function and therefore retains the fundamental advantages of the thermal LB method. Second, in the existing thermal LB models for liquid-vapor phase change, the finite-difference computations of the gradient terms ∇·u and ∇T usually require special treatment at boundary nodes, while in the proposed thermal LB model these two terms are calculated locally. Moreover, in some of the existing thermal LB models, the error term ∂_{t_{0}}(Tu) is eliminated by adding local correction terms to the collision process in the moment space, which causes these thermal LB models to be limited to the D2Q9 lattice in two dimensions and the D3Q15 or D3Q19 lattice in three dimensions. Conversely, the proposed model does not suffer from such an error term and therefore the thermal LB equation can be constructed on the D3Q7 lattice, which simplifies the model and improves the computational efficiency. Numerical simulations are carried out to validate the accuracy and efficiency of the proposed thermal multiphase LB model for simulating liquid-vapor phase change.

18.
J Phys Chem Lett ; 13(18): 4052-4057, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35522222

RESUMEN

Ab initio molecular dynamics (AIMD) is an established method for revealing the reactive dynamics of complex systems. However, the high computational cost of AIMD restricts the explorable length and time scales. Here, we develop a fundamentally different approach using molecular dynamics simulations powered by a neural network potential to investigate complex reaction networks. This potential is trained via a workflow combining AIMD and interactive molecular dynamics in virtual reality to accelerate the sampling of rare reactive processes. A panoramic visualization of the complex reaction networks for decomposition of a novel high explosive (ICM-102) is achieved without any predefined reaction coordinates. The study leads to the discovery of new pathways that would be difficult to uncover if established methods were employed. These results highlight the power of neural network-based molecular dynamics simulations in exploring complex reaction mechanisms under extreme conditions at the ab initio level, pushing the limit of theoretical and computational chemistry toward the realism and fidelity of experiments.


Asunto(s)
Simulación de Dinámica Molecular , Redes Neurales de la Computación
19.
Phys Rev E ; 105(4-2): 045314, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35590633

RESUMEN

As a powerful mesoscale approach, the lattice Boltzmann method (LBM) has been widely used for the numerical study of complex multiphase flows. Recently, Luo et al. [Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 379, 20200397 (2021)10.1098/rsta.2020.0397] proposed a unified lattice Boltzmann method (ULBM) to integrate the widely used lattice Boltzmann collision operators into a unified framework. In this study, we incorporate additional features into this ULBM in order to simulate multiphase flow under realistic conditions. A nonorthogonal moment set [Fei et al., Phys. Rev. E 97, 053309 (2018)10.1103/PhysRevE.97.053309] and the entropic-multi-relaxation-time (KBC) lattice Boltzmann model are used to construct the collision operator. An extended combined pseudopotential model is proposed to realize multiphase flow simulation at high-density ratio with tunable surface tension over a wide range. The numerical results indicate that the improved ULBM can significantly decrease the spurious velocities and adjust the surface tension without appreciably changing the density ratio. The ULBM is validated through reproducing various droplet dynamics experiments, such as binary droplet collision and droplet impingement on superhydrophobic surfaces. Finally, the extended ULBM is applied to complex droplet dynamics, including droplet pancake bouncing and droplet splashing. The maximum Weber number and Reynolds number in the simulation reach 800 and 7200, respectively, at a density ratio of 1000. The study demonstrates the generality and versatility of ULBM for incorporating schemes to tackle challenging multiphase problems.

20.
Phys Rev E ; 105(2-2): 025101, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35291136

RESUMEN

The classical D^{2}-Law states that the square of the droplet diameter decreases linearly with time during its evaporation process, i.e., D^{2}(t)=D_{0}^{2}-Kt, where D_{0} is the droplet initial diameter and K is the evaporation constant. Though the law has been widely verified by experiments, considerable deviations are observed in many cases. In this work, a revised theoretical analysis of the single droplet evaporation in finite-size open systems is presented for both two-dimensional (2D) and 3D cases. Our analysis shows that the classical D^{2}-Law is only applicable for 3D large systems (L≫D_{0}, L is the system size), while significant deviations occur for small (L≤5D_{0}) and/or 2D systems. Theoretical solution for the temperature field is also derived. Moreover, we discuss in detail the proper numerical implementation of droplet evaporation in finite-size open systems by the mesoscopic lattice Boltzmann method (LBM). Taking into consideration shrinkage effects and an adaptive pressure boundary condition, droplet evaporation in finite-size 2D/3D systems with density ratio up to 328 within a wide parameter range (K=[0.003,0.18] in lattice units) is simulated, and remarkable agreement with the theoretical solution is achieved, in contrast to previous simulations. The present work provides insights into realistic droplet evaporation phenomena and their numerical modeling using diffuse-interface methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA