Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.613
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 78(6): 1192-1206.e10, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32470318

RESUMEN

Tumor-derived extracellular vesicles are important mediators of cell-to-cell communication during tumorigenesis. Here, we demonstrated that hepatocellular carcinoma (HCC)-derived ectosomes remodel the tumor microenvironment to facilitate HCC progression in an ectosomal PKM2-dependent manner. HCC-derived ectosomal PKM2 induced not only metabolic reprogramming in monocytes but also STAT3 phosphorylation in the nucleus to upregulate differentiation-associated transcription factors, leading to monocyte-to-macrophage differentiation and tumor microenvironment remodeling. In HCC cells, sumoylation of PKM2 induced its plasma membrane targeting and subsequent ectosomal excretion via interactions with ARRDC1. The PKM2-ARRDC1 association in HCC was reinforced by macrophage-secreted cytokines/chemokines in a CCL1-CCR8 axis-dependent manner, further facilitating PKM2 excretion from HCC cells to form a feedforward regulatory loop for tumorigenesis. In the clinic, ectosomal PKM2 was clearly detected in the plasma of HCC patients. This study highlights a mechanism by which ectosomal PKM2 remodels the tumor microenvironment and reveals ectosomal PKM2 as a potential diagnostic marker for HCC.


Asunto(s)
Proteínas Portadoras/metabolismo , Micropartículas Derivadas de Células/metabolismo , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Portadoras/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/patología , Quimiocina CCL1/metabolismo , Progresión de la Enfermedad , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Monocitos/metabolismo , Pronóstico , Factor de Transcripción STAT3/metabolismo , Hormonas Tiroideas/genética , Microambiente Tumoral , Proteínas de Unión a Hormona Tiroide
2.
Stroke ; 55(8): 1973-1981, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39038096

RESUMEN

BACKGROUND: Stroke etiology could influence the outcomes in patients with basilar-artery occlusion (BAO). This study aimed to evaluate the differences in efficacy and safety of best medical treatment (BMT) plus endovascular treatment (EVT) versus BMT alone in acute BAO across different stroke etiologies. METHODS: The study was a post hoc analysis of the ATTENTION trial (Trial of Endovascular Treatment of Acute Basilar-Artery Occlusion), which was a multicenter, randomized trial at 36 centers in China from February 2021 to September 2022. Patients with acute BAO were classified into 3 groups according to stroke etiology (large-artery atherosclerosis [LAA], cardioembolism, and undetermined cause/other determined cause [UC/ODC]). The primary outcome was a favorable outcome (modified Rankin Scale score of 0-3) at 90 days. Safety outcomes included symptomatic intracranial hemorrhage and 90-day mortality. RESULTS: A total of 340 patients with BAO were included, 150 (44.1%) had LAA, 72 (21.2%) had cardioembolism, and 118 (34.7%) had UC/ODC. For patients treated with BMT plus EVT and BMT alone, respectively, the rate of favorable outcome at 90 days was 49.1% and 23.8% in the LAA group (odds ratio, 3.08 [95% CI, 1.38-6.89]); 52.2% and 30.8% in the cardioembolism group (odds ratio, 2.45 [95% CI, 0.89-6.77]); and 37.5% and 17.4% in the UC/ODC group (odds ratio, 2.85 [95% CI, 1.16-7.01]), with P=0.89 for the stroke etiology×treatment interaction. The rate of symptomatic intracranial hemorrhage in EVT-treated patients with LAA, cardioembolism, and UC/ODC was 8.3%, 2.2%, and 3.2%, respectively, and none of the BMT-treated patients. Lower 90-day mortality was observed in patients with EVT compared with BMT alone across 3 etiology groups. CONCLUSIONS: Among patients with acute BAO, EVT compared with BMT alone might be associated with favorable outcomes and lower 90-day mortality, regardless of cardioembolism, LAA, or UC/ODC etiologies. The influence of stroke etiology on the benefit of EVT should be explored by further trials. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04751708.


Asunto(s)
Procedimientos Endovasculares , Insuficiencia Vertebrobasilar , Humanos , Procedimientos Endovasculares/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Insuficiencia Vertebrobasilar/cirugía , Insuficiencia Vertebrobasilar/complicaciones , Resultado del Tratamiento , Accidente Cerebrovascular/cirugía , Accidente Cerebrovascular/etiología , China/epidemiología
3.
Prostate ; 84(6): 570-583, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38328967

RESUMEN

BACKGROUNDS: The study aimed to analyze epidemiology burden of male prostate cancer across the BRICS-plus, and identify potential risk factors by assessing the associations with age, period, birth cohorts and sociodemographic index (SDI). METHODS: Data were extracted from the Global Burden of Disease Study 2019. The average annual percent change (AAPC) was calculated to assess long-term trends, and age-period-cohort analysis was used to analyze these three effects on prostate cancer burden. Quantile regression was used to investigate the association between SDI and health outcomes. RESULTS: The higher incidence and mortality were observed in Mercosur and SACU regions, increasing trends were observed in prostate cancer incidence in almost all BRICS-plus countries (AAPC > 0), and EEU's grew by 24.31% (%AAPC range: -0.13-3.03). Mortality had increased in more than half of countries (AAPC > 0), and SACU grew by 1.82% (%AAPC range: 0.62-1.75). Incidence and mortality risk sharply increased with age across all BRICS-plus countries and globally, and the peak was reached in the age group 80-84 years. Rate ratio (RR) of incidence increased with birth cohorts in all BRICS-plus countries except for Kazakhstan where slightly decrease, while mortality RR decreased with birth cohort in most of BRICS-plus countries. SDI presented significantly positive associations with incidence in 50 percentiles. The deaths attributable to smoking declined in most of BRICS-plus nations, and many countries in China-ASEAN-FTA and EEU had higher values. CONCLUSION: Prostate cancer posed a serious public health challenge with an increasing burden among most of BRICS-plus countries. Age had significant effects on prostate cancer burden, and recent birth cohorts suffered from higher incidence risk. SDI presented a positive relationship with incidence, and the smoking-attributable burden was tremendous in China-ASEAN-FTA and EEU region. Secondary prevention should be prioritized in BRICS-plus nations, and health policies targeting important populations should be strengthened based on their characteristics and adaptability.


Asunto(s)
Carga Global de Enfermedades , Neoplasias de la Próstata , Humanos , Masculino , Anciano de 80 o más Años , Factores de Riesgo , Fumar/efectos adversos , Fumar/epidemiología , China/epidemiología , Neoplasias de la Próstata/epidemiología
4.
Small ; 20(22): e2307103, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38213015

RESUMEN

Flexible lithium-ion batteries (FLIBs) are intensively studied using free-standing transition metal oxides (TMOs)-based anode materials. However, achieving high areal capacity TMO-based anode materials is yet to be effectively elucidated owing to the poor adhesion of the active materials to the flexible substrate resulting in low active mass loading, and hence low areal capacity is realized. Herein, a novel monolithic rutile TiO2 microparticles on carbon cloth (ATO/CC) that facilitate the flower-like arrangement of TiO2 nanowires (denoted ATO/CC/OTO) is demonstrated as high areal capacity anode for FLIBs. The optimized ATO/CC/OTO anode exhibits high areal capacity (5.02 mAh cm-2@0.4 mA cm-2) excellent rate capability (1.17 mAh cm-2@5.0 mA cm-2) and remarkable cyclic stability (over 500 cycles). A series of morphological, kinetic, electrochemical, in situ Raman, and theoretical analyses reveal that the rational phase boundaries between the microparticles and nanowires contribute to promoting the Li storage activity. Furthermore, a 16.0 cm2 all-FLIB pouch cell assembled based on the ATO/CC/OTO anode and LiNiCoMnO2 cathode coated on ATO/CC (ATO/CC/LNCM) exhibits impressive flexibility under different folding conditions, creating opportunity for the development of high areal capacity anodes in future flexible energy storage devices.

5.
Small ; 20(31): e2311773, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38446094

RESUMEN

Active sites, mass loading, and Li-ion diffusion coefficient are the benchmarks for boosting the areal capacity and storage capability of electrode materials for lithium-ion batteries. However, simultaneously modulating these criteria to achieve high areal capacity in LIBs remains challenging. Herein, MoS2 is considered as a suitable electroactive host material for reversible Li-ion storage and establish an endogenous multi-heterojunction strategy with interfacial Mo-C/N-Mo-S coordination bonding that enables the concurrent regulation of these benchmarks. This strategy involves architecting 3D integrated conductive nanostructured frameworks composed of Mo2C-MoN@MoS2 on carbon cloth (denoted as C/MMMS) and refining the sluggish kinetics in the MoS2-based anodes. Benefiting from the rich hetero-interface active sites, optimized Li adsorption energy, and low diffusion barrier, C/MMMS reaches a mass loading of 12.11 mg cm-2 and showcases high areal capacity and remarkable rate capability of 9.6 mAh cm-2@0.4 mA cm-2 and 2.7 mAh cm-2@6.0 mA cm-2, respectively, alongside excellent stability after 500 electrochemical cycles. Moreover, this work not only affirms the outstanding performance of the optimized C/MMMS as an anode material for supercapacitors, underscoring its bifunctionality but also offers valuable insight into developing endogenous transition metal compound electrodes with high mass loading for the next-generation high areal capacity energy storage devices.

6.
Appl Environ Microbiol ; 90(4): e0174323, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38470180

RESUMEN

Soil and rhizosphere bacteria act as a rich source of secondary metabolites, effectively fighting against a diverse array of pathogens. Certain Pseudomonas species harbor biosynthetic gene clusters for producing both pyoluteorin and 2,4-diacetylphloroglucinol (2,4-DAPG), which are polyketides that exhibit highly similar antimicrobial spectrum against bacteria and fungi or oomycete. A complex cross talk exists between pyoluteorin and 2,4-DAPG biosynthesis, and production of 2,4-DAPG was strongly repressed by pyoluteorin, yet the underlying mechanism is still elusive. In this study, we find that the TetR family transcription factor PhlH is involved in the cross talk between pyoluteorin and 2,4-DAPG biosynthesis. PhlH binds to a palindromic sequence within the promoter of phlG (PphlG), which encodes a C-C bond hydrolase responsible for degrading 2,4-DAPG. As a signaling molecule, pyoluteorin disrupts the PhlH-PphlG complex by binding to PhlH, leading to decreased levels of 2,4-DAPG. Proteomics data suggest that pyoluteorin regulates multiple physiological processes including fatty acid biosynthesis and transportation of taurine, siderophore, and amino acids. Our work not only reveals a novel mechanism of cross talk between pyoluteorin and 2,4-DAPG biosynthesis, but also highlights pyoluteorin's role as a messenger in the complex communication network of Pseudomonas.IMPORTANCEAntibiosis serves as a crucial defense mechanism for microbes against invasive bacteria and resource competition. These bacteria typically orchestrate the production of multiple antibiotics in a coordinated fashion, wherein the synthesis of one antibiotic inhibits the generation of another. This strategic coordination allows the bacterium to focus its resources on producing the most advantageous antibiotic under specific circumstances. However, the underlying mechanisms of distinct antibiotic production in bacterial cells remain largely elusive. In this study, we reveal that the TetR family transcription factor PhlH detects the secondary metabolite pyoluteorin and mediates the cross talk between pyoluteorin and 2,4-DAPG biosynthesis in the biocontrol strain Pseudomonas protegens Pf-5. These findings hold promise for future research, potentially informing the manipulation of these systems to enhance the effectiveness of biocontrol agents.


Asunto(s)
Fenoles , Floroglucinol/análogos & derivados , Pseudomonas fluorescens , Pirroles , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas/metabolismo , Antibacterianos/farmacología , Pseudomonas fluorescens/genética
7.
Plant Cell Environ ; 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39420598

RESUMEN

Nitrogen is a crucial macroelement essential for plant growth and development. In Arabidopsis Thaliana, classical phytohormones such as auxin and cytokinin orchestrate local and systemic signalling networks coordinate plant growth and development in response to nitrogen deficiency. Nowadays, emerging signalling pathways involving small peptides like CLAVATA3/EMBRYO SURROUNDINGR REGION (CLE) and C-TERMINALLY ENCODED PEPTIDE (CEP) and their corresponding kinase receptors, also regulate Arabidopsis' adaptation to nitrogen scarcity. Unlike Arabidopsis, which adapts to nitrogen deficiency by changing root development, legumes have the unique ability to form nitrogen-fixing root nodules through symbiotic interactions with soil rhizobia. During the symbiotic nodulation in Medicago, CLE and CEP peptides and their receptors consist of an autoregulatory network governing the number of nodules in accordance with the soil nitrogen level. Additionally, other plant peptides, such as phytosulfokine (PSK) and root meristem growth factors (RGF), have been identified as new regulators of leguminous root nodule development under nitrogen-limited condition. However, the precise mechanism by which these peptides coordinate nitrogen deficiency response and the development of nitrogen-fixing organs remains to be fully elucidated. This review summarises the adaptive strategies of dicotyledons to nitrogen deficiency, with a particular focus on the regulation of Medicago nitrogen-fixing nodule development by the peptides.

8.
Plant Cell Environ ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286964

RESUMEN

Posttranslational tyrosine sulfation of peptides and proteins is catalysed by tyrosylprotein sulfotransferases (TPSTs). In Arabidopsis, tyrosine sulfation is essential for the activities of peptide hormones, such as phytosulfokine (PSK) and root meristem growth factor (RGF). Here, we identified a TPST-encoding gene, MtTPST, from model legume Medicago truncatula. MtTPST expression was detected in all organs, with the highest level in root nodules. A promoter:GUS assay revealed that MtTPST was highly expressed in the root apical meristem, nodule primordium and nodule apical meristem. The loss-of-function mutant mttpst exhibited a stunted phenotype with short roots and reduced nodule number and size. Application of both of the sulfated peptides PSK and RGF3 partially restored the defective root length of mttpst. The reduction in symbiotic nodulation in mttpst was partially recovered by treatment with sulfated PSK peptide. MtTPST-PSK module functions downstream of the Nod factor signalling to promote nodule initiation via regulating accumulation and/or signalling of cytokinin and auxin. Additionally, the small-nodule phenotype of mttpst, which resulted from decreased apical meristematic activity, was partially complemented by sulfated RGF3 treatment. Together, these results demonstrate that MtTPST, through its substrates PSK, RGF3 and other sulfated peptide(s), positively regulates nodule development and root growth.

9.
Blood ; 139(18): 2797-2815, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35286385

RESUMEN

Myeloproliferative neoplasms (MPNs) transform to myelofibrosis (MF) and highly lethal acute myeloid leukemia (AML), although the actionable mechanisms driving progression remain elusive. Here, we elucidate the role of the high mobility group A1 (HMGA1) chromatin regulator as a novel driver of MPN progression. HMGA1 is upregulated in MPN, with highest levels after transformation to MF or AML. To define HMGA1 function, we disrupted gene expression via CRISPR/Cas9, short hairpin RNA, or genetic deletion in MPN models. HMGA1 depletion in JAK2V617F AML cell lines disrupts proliferation, clonogenicity, and leukemic engraftment. Surprisingly, loss of just a single Hmga1 allele prevents progression to MF in JAK2V617F mice, decreasing erythrocytosis, thrombocytosis, megakaryocyte hyperplasia, and expansion of stem and progenitors, while preventing splenomegaly and fibrosis within the spleen and BM. RNA-sequencing and chromatin immunoprecipitation sequencing revealed HMGA1 transcriptional networks and chromatin occupancy at genes that govern proliferation (E2F, G2M, mitotic spindle) and cell fate, including the GATA2 master regulatory gene. Silencing GATA2 recapitulates most phenotypes observed with HMGA1 depletion, whereas GATA2 re-expression partially rescues leukemogenesis. HMGA1 transactivates GATA2 through sequences near the developmental enhancer (+9.5), increasing chromatin accessibility and recruiting active histone marks. Further, HMGA1 transcriptional networks, including proliferation pathways and GATA2, are activated in human MF and MPN leukemic transformation. Importantly, HMGA1 depletion enhances responses to the JAK2 inhibitor, ruxolitinib, preventing MF and prolonging survival in murine models of JAK2V617F AML. These findings illuminate HMGA1 as a key epigenetic switch involved in MPN transformation and a promising therapeutic target to treat or prevent disease progression.


Asunto(s)
Factor de Transcripción GATA2 , Proteína HMGA1a , Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Mielofibrosis Primaria , Animales , Proliferación Celular , Cromatina/genética , Factor de Transcripción GATA2/genética , Redes Reguladoras de Genes , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Leucemia Mieloide Aguda/genética , Ratones , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Mielofibrosis Primaria/genética
10.
Insect Mol Biol ; 33(6): 613-625, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38709468

RESUMEN

Cordyceps cicadae (Hypocreales: Cordycipitaceae) is a renowned entomopathogenic fungus used as herbal medicine in China. However, wild C. cicadae resources have been threatened by heavy harvesting. We hypothesised that Bombyx mori L. (Lepidoptera: Bombycidae) could be a new alternative to cultivate C. cicadae due to the low cost of rearing. Bacterial communities are crucial for the formation of Cordyceps and for promoting the production of metabolites. To better understand the bacterial community structure associated with Cordyceps, three Claviciptaceae fungi were used to explore the pathogenicity of the silkworms. Here, fifth-instar silkworms were infected with C. cicadae, Cordyceps cateniannulata (Hypocreales: Cordycipitaceae) and Beauveria bassiana (Hypocreales: Cordycipitaceae). Subsequently, we applied high-throughput sequencing to explore the composition of bacterial communities in silkworms. Our results showed that all three fungi were highly pathogenic to silkworms, which suggests that silkworms have the potential to cultivate Cordyceps. After fungal infection, the diversity of bacterial communities in silkworms decreased significantly, and the abundance of Staphylococcus increased in mummified larvae, which may play a role in the death process when the host suffers infection by entomopathogenic fungi. Furthermore, there were high similarities in the bacterial community composition and function in the C. cicadae and C. cateniannulata infected samples, and the phylogenetic analysis suggested that these similarities may be related to the fungal phylogenetic relationship. Our findings reveal that infection with different entomopathogenic fungi affects the composition and function of bacterial communities in silkworms and that the bacterial species associated with Cordyceps are primarily host dependent, while fungal infection affects bacterial abundance.


Asunto(s)
Bombyx , Cordyceps , Larva , Animales , Bombyx/microbiología , Bombyx/crecimiento & desarrollo , Cordyceps/genética , Larva/microbiología , Larva/crecimiento & desarrollo , Bacterias/genética , Bacterias/clasificación , Microbiota , Beauveria/patogenicidad , Beauveria/genética , Beauveria/fisiología
11.
Opt Lett ; 49(15): 4302-4305, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090919

RESUMEN

Circular dichroism (CD) spectrum and optical rotation (OR) spectrum, crucial for understanding molecular properties and configurations, present challenges due to limited testing methods and equipment accuracy in the ultraviolet (UV) region. This study proposes a weak measurement system for chiral signals in varying concentrations in the ultraviolet range, optimized using a deep neural network (DNN) model. Introducing different post-selections to detect the circular dichroism spectrum and optical rotation spectrum separately, with contrast as a probe, it achieves a detection resolution of up to 10-6 rad. Moreover, the fitted value of the training data can reach 0.9989, enhancing the prediction accuracy of chiral molecule concentrations. This method exhibits considerable promise for applications in chiral measurement and sensor technologies.

12.
Respir Res ; 25(1): 90, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355515

RESUMEN

BACKGROUND: Exposure to PM2.5 has been implicated in a range of detrimental health effects, particularly affecting the respiratory system. However, the precise underlying mechanisms remain elusive. METHODS: To address this objective, we collected ambient PM2.5 and administered intranasal challenges to mice, followed by single-cell RNA sequencing (scRNA-seq) to unravel the heterogeneity of neutrophils and unveil their gene expression profiles. Flow cytometry and immunofluorescence staining were subsequently conducted to validate the obtained results. Furthermore, we assessed the phagocytic potential of neutrophils upon PM2.5 exposure using gene analysis of phagocytosis signatures and bacterial uptake assays. Additionally, we utilized a mouse pneumonia model to evaluate the susceptibility of PM2.5-exposed mice to Pseudomonas aeruginosa infection. RESULTS: Our study revealed a significant increase in neutrophil recruitment within the lungs of PM2.5-exposed mice, with subclustering of neutrophils uncovering subsets with distinct gene expression profiles. Notably, exposure to PM2.5 was associated with an expansion of PD-L1high neutrophils, which exhibited impaired phagocytic function dependent upon PD-L1 expression. Furthermore, PM2.5 exposure was found to increase the susceptibility of mice to Pseudomonas aeruginosa, due in part to increased PD-L1 expression on neutrophils. Importantly, monoclonal antibody targeting of PD-L1 significantly reduced bacterial burden, dissemination, and lung inflammation in PM2.5-exposed mice upon Pseudomonas aeruginosa infection. CONCLUSIONS: Our study suggests that PM2.5 exposure promotes expansion of PD-L1high neutrophils with impaired phagocytic function in mouse lungs, contributing to increased vulnerability to bacterial infection, and therefore targeting PD-L1 may be a therapeutic strategy for reducing the harmful effects of PM2.5 exposure on the immune system.


Asunto(s)
Neumonía , Infecciones por Pseudomonas , Animales , Ratones , Neutrófilos/metabolismo , Material Particulado/toxicidad , Infecciones por Pseudomonas/microbiología , Antígeno B7-H1/metabolismo , Pulmón , Neumonía/metabolismo , Pseudomonas aeruginosa
13.
Exp Dermatol ; 33(1): e14926, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37702410

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease in which defective T cells, immune complex deposition and other immune system alterations contribute to pathological changes of multiple organ systems. The vitamin D metabolite c is a critical immunomodulator playing pivotal roles in the immune system. Epidemiological evidence indicates that vitamin D deficiency is correlated with the severity of SLE. Our aim is to investigate the effects of 1,25(OH)2D3 (VitD3) on the activation of myeloid dendritic cells (mDCs) by autologous DNA-containing immune complex (DNA-ICs), and the effects of VitD3 on immune system balance during SLE. We purified DNA-ICs from the serum of SLE patients and isolated mDCs from normal subjects. In vitro studies showed that DNA-ICs were internalized and consumed by mDCs. VitD3 blocked the effects of DNA-ICs on RelB, IL-10 and TNF-α in mDCs. Further analysis indicated that DNA-ICs stimulated histone acetylation in the RelB promoter region, which was inhibited by VitD3. Knockdown of the histone deacetylase 3 gene (HDAC3) blocked these VitD3-mediated effects. Co-culture of mDCs and CD4+ T cells showed that VitD3 inhibited multiple processes mediated by DNA-ICs, including proliferation, downregulation of IL-10, TGF-ß and upregulation of TNF-α. Moreover, VitD3 could also reverse the effects of DNA-IC-induced imbalance of CD4+ CD127- Foxp3+ T cells and CD4+ IL17+ T cells. Taken together, our results indicated that autologous DNA-ICs stimulate the activation of mDCs in the pathogenesis of SLE, and VitD3 inhibits this stimulatory effects of DNA-ICs by negative transcriptional regulation of RelB gene and maintaining the Treg/Th17 immune cell balance. These results suggest that vitamin D may have therapeutic value for the treatment of SLE.


Asunto(s)
Colecalciferol , Lupus Eritematoso Sistémico , Humanos , Colecalciferol/farmacología , Interleucina-10 , Complejo Antígeno-Anticuerpo , Factor de Necrosis Tumoral alfa , Inflamación , Vitamina D/farmacología , Células Dendríticas/metabolismo , ADN
14.
BMC Cancer ; 24(1): 1033, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169309

RESUMEN

OBJECTIVE: Transfer RNA-derived fragments (tRFs) are short non-coding RNA (ncRNA) sequences, ranging from 14 to 30 nucleotides, produced through the precise cleavage of precursor and mature tRNAs. While tRFs have been implicated in various diseases, including cancer, their role in lung adenocarcinoma (LUAD) remains underexplored. This study aims to investigate the impact of tRF-Val-CAC-010, a specific tRF molecule, on the phenotype of LUAD cells and its role in tumorigenesis and progression in vivo. METHODS: The expression level of tRF-Val-CAC-010 was quantified using quantitative real-time polymerase chain reaction (qRT-PCR). Specific inhibitors and mimics of tRF-Val-CAC-010 were synthesized for transient transfection. Cell proliferation was assessed using the Cell Counting Kit-8 (CCK-8), while cell invasion and migration were evaluated through Transwell invasion and scratch assays. Flow cytometry was utilized to analyze cell cycle and apoptosis. The in vivo effects of tRF-Val-CAC-010 on tumor growth and metastasis were determined through tumor formation and metastasis imaging experiments in nude mice. RESULTS: The expression level of tRF-Val-CAC-010 was upregulated in A549 and PC9 LUAD cells (P < 0.01). Suppression of tRF-Val-CAC-010 expression resulted in decreased proliferation of A549 and PC9 cells (P < 0.001), reduced invasion and migration of A549 (P < 0.05, P < 0.001) and PC9 cells (P < 0.05, P < 0.01), enhanced apoptosis in both A549 (P < 0.05) and PC9 cells (P < 0.05), and increased G2 phase cell cycle arrest in A549 cells (P < 0.05). In vivo, the tumor formation volume in the tRF-inhibitor group was significantly smaller than that in the model and tRF-NC groups (P < 0.05). The metastatic tumor flux value in the tRF-inhibitor group was also significantly lower than that in the model and tRF-NC groups (P < 0.05). CONCLUSION: This study demonstrates that tRF-Val-CAC-010 promotes proliferation, migration, and invasion of LUAD cells and induces apoptosis in vitro, however, its specific effects on the cell cycle require further elucidation. Additionally, tRF-Val-CAC-010 enhances tumor formation and metastasis in vivo. Therefore, tRF-Val-CAC-010 may serve as a novel diagnostic biomarker and potential therapeutic target for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Apoptosis , Movimiento Celular , Proliferación Celular , Neoplasias Pulmonares , Ratones Desnudos , Humanos , Animales , Ratones , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Células A549 , Carcinogénesis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Metástasis de la Neoplasia
15.
BMC Cancer ; 24(1): 290, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438956

RESUMEN

BACKGROUND: Primary prostate cancer with metastasis has a poor prognosis, so assessing its risk of metastasis is essential. METHODS: This study combined comprehensive ultrasound features with tissue proteomic analysis to obtain biomarkers and practical diagnostic image features that signify prostate cancer metastasis. RESULTS: In this study, 17 ultrasound image features of benign prostatic hyperplasia (BPH), primary prostate cancer without metastasis (PPCWOM), and primary prostate cancer with metastasis (PPCWM) were comprehensively analyzed and combined with the corresponding tissue proteome data to perform weighted gene co-expression network analysis (WGCNA), which resulted in two modules highly correlated with the ultrasound phenotype. We screened proteins with temporal expression trends based on the progression of the disease from BPH to PPCWOM and ultimately to PPCWM from two modules and obtained a protein that can promote prostate cancer metastasis. Subsequently, four ultrasound image features significantly associated with the metastatic biomarker HNRNPC (Heterogeneous nuclear ribonucleoprotein C) were identified by analyzing the correlation between the protein and ultrasound image features. The biomarker HNRNPC showed a significant difference in the five-year survival rate of prostate cancer patients (p < 0.0053). On the other hand, we validated the diagnostic efficiency of the four ultrasound image features in clinical data from 112 patients with PPCWOM and 150 patients with PPCWM, obtaining a combined diagnostic AUC of 0.904. In summary, using ultrasound imaging features for predicting whether prostate cancer is metastatic has many applications. CONCLUSION: The above study reveals noninvasive ultrasound image biomarkers and their underlying biological significance, which provide a basis for early diagnosis, treatment, and prognosis of primary prostate cancer with metastasis.


Asunto(s)
Neoplasias de los Genitales Femeninos , Hiperplasia Prostática , Neoplasias de la Próstata , Masculino , Femenino , Humanos , Proteoma , Proteómica , Fenotipo , Ultrasonografía , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/genética , Biomarcadores
16.
Mol Psychiatry ; 28(4): 1703-1717, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36782064

RESUMEN

Vocalization is an essential medium for social signaling in birds and mammals. Periaqueductal gray (PAG) a conserved midbrain structure is believed to be responsible for innate vocalizations, but its molecular regulation remains largely unknown. Here, through a mouse forward genetic screening we identified one of the key Wnt/ß-catenin effectors TCF7L2/TCF4 controls ultrasonic vocalization (USV) production and syllable complexity during maternal deprivation and sexual encounter. Early developmental expression of TCF7L2 in PAG excitatory neurons is necessary for the complex trait, while TCF7L2 loss reduces neuronal gene expressions and synaptic transmission in PAG. TCF7L2-mediated vocal control is independent of its ß-catenin-binding domain but dependent of its DNA binding ability. Patient mutations associated with developmental disorders, including autism spectrum disorders, disrupt the transcriptional repression effect of TCF7L2, while mice carrying those mutations display severe USV impairments. Therefore, we conclude that TCF7L2 orchestrates gene expression in midbrain to control vocal production through its DNA binding but not transcription activation domain.


Asunto(s)
Proteína 2 Similar al Factor de Transcripción 7 , beta Catenina , Ratones , Animales , beta Catenina/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Sustancia Gris Periacueductal/metabolismo , Transducción de Señal/fisiología , Mamíferos/genética , Mamíferos/metabolismo , ADN , Vocalización Animal/fisiología
17.
Cell Commun Signal ; 22(1): 473, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363344

RESUMEN

Aryl hydrocarbon receptor (AhR) plays an important role in inflammation and immunity as a new therapeutic target for infectious disease and sepsis. Punicalagin (PUN) is a Chinese herbal monomer extract of pomegranate peel that has beneficial anti-inflammatory, antioxidant and anti-infective effects. However, whether PUN is a ligand of AhR, its effect on AhR expression, and its signaling pathway remain poorly understood. In this study, we found that PUN was a unique polyphenolic compound that upregulated AhR expression at the transcriptional level, and regulated the AhR nongenomic pathway. AhR expression in lipopolysaccharide-induced macrophages was upregulated by PUN in vitro and in vivo in a time- and dose-dependent manner. Using specific inhibitors and siRNA, induction of AhR by PUN depended on sequential phosphorylation of 90-kDa ribosomal S6 kinase (p90RSK), which was activated by the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide-dependent protein kinase (PDK)1 pathways. PUN promoted p90RSK-mediated activator protein-1 (AP-1) activation. AhR knockout or inhibitors reversed suppression of interleukin (IL)-6 and IL-1ß expression by PUN. PUN decreased Listeria load and increased macrophage survival via AhR upregulation. In conclusion, we identified PUN as a novel selective AhR modulator involved in AhR expression via the MEK/ERK and PDK1 pathways targeting p90RSK/AP-1 in inflammatory macrophages, which inhibited macrophage inflammation and promoted bactericidal activity.


Asunto(s)
Taninos Hidrolizables , Macrófagos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Receptores de Hidrocarburo de Aril , Proteínas Quinasas S6 Ribosómicas 90-kDa , Transducción de Señal , Factor de Transcripción AP-1 , Regulación hacia Arriba , Taninos Hidrolizables/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Regulación hacia Arriba/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Transducción de Señal/efectos de los fármacos , Antiinflamatorios/farmacología , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Células RAW 264.7 , Lipopolisacáridos/farmacología
18.
Neurochem Res ; 49(3): 692-705, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38047987

RESUMEN

Narirutin (Nar) is a flavonoid that is abundantly present in citrus fruits and has attracted considerable attention because of its diverse pharmacological activities and low toxicity. Here, we evaluated the preventive effects of Nar in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice and oxygen-glucose deprivation/reperfusion (OGD/R)-injured bEnd.3 cells. Pretreatment with Nar (150 mg/kg) for 7 days effectively reduced infarct volume, improved neurological deficits, and significantly inhibited neuronal death in the hippocampus and cortex in MCAO/R-injured mice. Moreover, anti-apoptotic effects of Nar (50 µM) were observed in OGD/R-injured bEnd.3 cells. In addition, Nar pre-administration regulated blood-brain barrier function by increasing tight junction-related protein expression after MCAO/R and OGD/R injury. Nar also inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation by reducing the expression of thioredoxin-interacting protein (TXNIP) in vivo and in vitro. Taken together, these results provide new evidence for the use of Nar in the prevention and treatment of ischemic stroke.


Asunto(s)
Isquemia Encefálica , Disacáridos , Flavanonas , Daño por Reperfusión , Ratas , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR , Ratas Sprague-Dawley , Células Endoteliales/metabolismo , Inflamasomas/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/prevención & control , Isquemia Encefálica/metabolismo , Proteínas de Ciclo Celular
19.
AIDS Care ; : 1-8, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39383538

RESUMEN

Post-traumatic stress disorder (PTSD) and depression are two major psychological disorders that affect the mental health of people living with HIV (PLWH). The occurrence of PTSD and depression may be linked to perceptions of parental rearing styles in childhood. However, little is known about the relationship between perceived parental rearing styles, and PTSD and depression in the PLWH population. This study investigated 300 PLWH and explored the relationship between perceived parental rearing style, social support, PTSD, and depression. The results indicated that perceived paternal and maternal warmth were negatively associated with PTSD. Perceived maternal warmth and overprotection were negatively associated with depression. Social support acted as a mediator between perceived parental warmth, PTSD, and depression. Therefore, it is necessary to focus on patients who feel they experienced a lack of parental warmth during childhood and provide psychological care and support, which may help reduce the risk of developing PTSD and depression.

20.
Clin Exp Rheumatol ; 42(3): 633-641, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37812493

RESUMEN

OBJECTIVES: CD25 (IL-2Rα) is one of IL-2 receptor's polypeptide subunits, and its soluble form is increased in patients with various inflammatory or autoimmune diseases. This study aimed to evaluate the clinical correlation of serum soluble CD25 (sCD25) with interstitial lung disease (ILD) in rheumatoid arthritis (RA) patients. METHODS: 294 RA patients, including 72 in the discovery cohort (15 patients with ILD, 57 patients without ILD), 222 in the validation cohort (41 patients with ILD and 181 patients without ILD), and 58 healthy controls (HCs) were recruited. High-resolution computed tomography (HRCT) scan provided evidence and patterns of RA-ILD. Serum sCD25 concentrations were measured by enzyme-linked immunosorbent assay (ELISA). Clinical and laboratory data were recorded and the association with sCD25 was also analysed. RESULTS: In the discovery cohort, 16 RA-related molecules including cytokines, chemokines and functional soluble cell surface proteins were investigated. The results showed that sCD25 was significantly higher in RA-ILD than in RA-no-ILD group (p=0.004). ROC analysis also showed RA-ILD was discriminated with RA-no-ILD by sCD25 (AUC=0.695, 95% CI=0.541-0.849). Logistics regression demonstrated that sCD25 was one of the risk factors of RA-ILD. This result was further confirmed in validation cohort (p<0.001). According to the cut-off value in the discovery cohort, the sensitivity and specificity of sCD25 in RA-ILD were 51.2%, 77.3%, respectively. Compared with RA-no-ILD, serum level of sCD25 was also higher in different HRCT patterns including UIP, NSIP and RA-ILA. The ROC curves revealed sCD25 as diagnostic marker in UIP, NSIP and RA-ILA (with AUCs of 0.730, 0.761, and 0. 694, respectively, p<0.05). The result indicated that sCD25 was a biomarker for RA-ILD subtypes. Although sCD25 was not correlated with HRCT scores, it was significantly higher in consolidation pattern by HRCT. CONCLUSIONS: sCD25 was significantly elevated in RA-ILD (including UIP, NSIP and RA-ILA) compared to RA-no-ILD and HCs, which supports their value as a potential biomarker in RA-ILD screening and assessment.


Asunto(s)
Artritis Reumatoide , Enfermedades Pulmonares Intersticiales , Humanos , Subunidad alfa del Receptor de Interleucina-2 , Artritis Reumatoide/complicaciones , Artritis Reumatoide/diagnóstico , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Pulmonares Intersticiales/complicaciones , Factores de Riesgo , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA