Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(6): e2305706, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37788906

RESUMEN

Developing versatile systems that can concurrently achieve energy saving and energy generation is critical to accelerate carbon neutrality. However, challenges on designing highly effective, large scale, and multifunctional photonic film hinder the concurrent combination of passive daytime radiative cooling (PDRC) and utilization of sustainable clean energies. Herein, a versatile scalable photonic film (Ecoflex@h-BN) with washable property and excellent mechanical stability is developed by combining the excellent scattering efficiency of the hexagonal boron nitride (h-BN) nanoplates with the high infrared emissivity and ideal triboelectric negative property of the Ecoflex matrix. Strikingly, sufficiently high solar reflectance (0.92) and ideal emissivity (0.97) endow the Ecoflex@h-BN film with subambient cooling effect of ≈9.5 °C at midday during the continuous outdoor measurements. In addition, the PDRC Ecoflex@h-BN film-based triboelectric nanogenerator (PDRC-TENG) exhibits a maximum peak power density of 0.5 W m-2 . By reasonable structure design, the PDRC-TENG accomplishes effective wind energy harvesting and can successfully drive the electronic device. Meanwhile, an on-skin PDRC-TENG is fabricated to harvest human motion energy and monitor moving states. This research provides a novel design of a multifunctional PDRC photonic film, and offers a versatile strategy to realize concurrent PDRC and sustainable energies harvesting.

2.
Small ; 20(26): e2308661, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38258607

RESUMEN

Passive daytime radiative cooling (PDRC) materials with sustainable energy harvesting capability is critical to concurrently reduce traditional cooling energy utilized for thermal comfort and transfer natural clean energies into electricity. Herein, a versatile photonic film (Ecoflex@BTO@UAFL) based on a novel fluorescent luminescence color passive radiative cooling with triboelectric and piezoelectric effect is developed by filling the dielectric BaTiO3 (BTO) nanoparticles and ultraviolet absorption fluorescent luminescence (UAFL) powder into the elastic Ecoflex matrix. Test results demonstrate that the Ecoflex@BTO@UAFL photonic film exhibits a maximum passive radiative cooling effect of ∽10.1 °C in the daytime. Meanwhile, its average temperature drop in the daytime is ~4.48 °C, which is 0.91 °C higher than that of the Ecoflex@BTO photonic film (3.56 °C) due to the addition of UAFL material. Owing to the high dielectric constant and piezoelectric effect of BTO nanoparticles, the maximum power density (0.53 W m-2, 1 Hz @ 10 N) of the Ecoflex@BTO photonic film-based hybrid nanogenerator is promoted by 70.9% compared to the Ecoflex film-based TENG. This work provides an ingenious strategy for combining PDRC effects with triboelectric and piezoelectric properties, which can spontaneously achieve thermal comfort and energy conservation, offering a new insight into multifunctional energy saving.

3.
Opt Lett ; 49(5): 1189-1192, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426970

RESUMEN

In recent years, wide field-of-view imaging technology based on a metasurface has been widely applied. However, works on the reported sub-diffraction metalens with a wide field-of-view indicate that multiple structures are essential to effectively eliminate aberrations, which results in a heavy device thickness and weakens the advantage of an ultra-thin metasurface. To solve this problem, according to the super-oscillation theory and the translational symmetry of quadratic phase, as well as the principle of virtual aperture diaphragm based on wave vector filter, this Letter demonstrates a sub-diffraction metalens combined with a single quadratic metalens and a wave vector filter. Our design not only realizes the super-resolution effects of 0.74 to 0.75 times the diffraction limit in the wide field-of-view of nearly 180° for the first time to our knowledge but also compresses the device thickness to the subwavelength order in principle. The proposed ultra-thin sub-diffraction metalens with a wide field-of-view is expected to be applied in the fields of super-resolution fast scanning imaging, information detection, small target recognition, and so on.

4.
Opt Express ; 31(13): 21200-21211, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37381225

RESUMEN

This paper proposes and demonstrates a flexible long-wave infrared snapshot multispectral imaging system consisting of a simple re-imaging system and a pixel-level spectral filter array. A six-band multispectral image in the spectral range of 8-12 µm with full width at half maximum of about 0.7 µm each band is acquired in the experiment. The pixel-level multispectral filter array is placed at the primary imaging plane of the re-imaging system instead of directly encapsulated on the detector chip, which diminishes the complexity of pixel-level chip packaging. Furthermore, the proposed method possesses the merit of flexible functions switching between multispectral imaging and intensity imaging by plugging and unplugging the pixel-level spectral filter array. Our approach could be viable for various practical long-wave infrared detection applications.

5.
Opt Express ; 31(9): 14785-14795, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37157335

RESUMEN

In this paper, we demonstrated a miniaturized diffractive/refractive hybrid system based on a diffractive optical element and three refractive lenses to achieve solar-blind ultraviolet imaging within a range of 240-280 nm. We experimentally demonstrate the optical system has both outstanding resolution and excellent imaging capability. The experiments demonstrate that the system could distinguish the smallest line pair with a width of 16.7 µm. The modulation transfer function (MTF) at the target maximum frequency (77 lines pair/mm) is great than 0.76. The strategy provides significant guidance for the mass production of solar-blind ultraviolet imaging systems towards miniaturization and lightweight.

6.
Opt Express ; 31(5): 8068-8080, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859924

RESUMEN

Phase-gradient metasurfaces are two-dimensional (2D) optical elements that can manipulate light by imposing local, space-variant phase changes on an incident electromagnetic wave. These metasurfaces hold the potential and the promise to revolutionize photonics by providing ultrathin alternatives for a wide range of common optical elements such as bulky refractive optics, waveplates, polarizers, and axicons. However, the fabrication of state-of-the-art metasurfaces typically requires some time-consuming, expensive, and possibly hazardous processing steps. To overcome these limitations on conventional metasurface fabrication, a facile methodology to produce phase-gradient metasurfaces through one-step UV-curable resin printing is developed by our research group. The method dramatically reduces the required processing time and cost, as well as eliminates safety hazards. As a proof-of-concept, the advantages of the method are clearly demonstrated via a rapid reproduction of high-performance metalenses based on the Pancharatnam-Berry phase gradient concept in the visible spectrum.

7.
Opt Express ; 31(10): 15848-15863, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157676

RESUMEN

High-sensitivity, reproducible, and low-cost substrate has been a major obstacle for practical sensing application of surface-enhancement Raman scattering (SERS). In this work, we report a type of simple SERS substrate which is composed of metal-insulator-metal (MIM) structure of Ag nanoisland (AgNI)-SiO2-Ag film (AgF). The substrates are fabricated by only evaporation and sputtering processes, which are simple, fast and low-cost. By combining the hotspots and interference-enhanced effects in AgNIs and the plasmonic cavity (SiO2) between AgNIs and AgF, the proposed SERS substrate shows an enhancement factor (EF) of 1.83 × 108 with limit of detection (LOD) down to 10-17 mol/L for rhodamine 6 G (R6G) molecules. The EFs are ∼18 times higher than that of conventional AgNIs without MIM structure. In addition, the MIM structure shows excellent reproducibility with relative standard deviation (RSD) less than 9%. The proposed SERS substrate is fabricated only with evaporation and sputtering technique and the conventionally used lithographic methods or chemical synthesis are not required. This work provides a simple way to fabricate ultrasensitive and reproducible SERS substrates which show great promise for developing various biochemical sensors with SERS.

8.
Opt Express ; 31(25): 42165-42175, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087596

RESUMEN

Free space optical (FSO) communication has gained widespread attention due to its advantages, including high confidentiality, high communication capacity, and no limitation of spectrum. One of the great challenges in FSO communication is the transmission performance degradation in atmospheric turbulence channel due to wavefront distortion and scintillation. Here, we proposed and experimentally demonstrated a 120 Gbit/s vector beam multiplexed coherent optical communication system with turbulence-resilient capacity. Four multiplexed vector beams, each carrying a 30 Gbit/s quadrature phase-shift keying signal, propagate through different turbulence conditions. The influence of turbulence channel on the vector beam impairments is experimentally investigated. Under the weaker turbulence conditions, the system bit error rates are below the forward error correction threshold of 3.8 × 10-3. In comparison with the Gaussian mode, the communication interruption probability of the vector beams system decreases from 36% to 12%-18% under stronger turbulence conditions.

9.
Opt Lett ; 48(6): 1470-1473, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946955

RESUMEN

For the first time, to the best of our knowledge, we experimentally demonstrate a high-speed free-space secure optical communication system based on all-optical chaos modulation. The effect of atmospheric turbulence on optical chaos synchronization is experimentally investigated via a hot air convection atmospheric turbulence simulator. It is shown that, even under moderately strong turbulent conditions, high-quality chaos synchronization could be obtained by increasing the transmission power. Moreover, a secure encryption transmission experiment using a high bias current induced chaotic carrier for 8-Gbit/s on-off-keying data over a ∼10-m free-space optical link is successfully demonstrated, with a bit-error rate below the FEC threshold of 3.8 × 10-3. This work favorably shows the feasibility of optical chaotic encryption for the free-space optical transmission system.

10.
Opt Express ; 30(7): 12069-12079, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473136

RESUMEN

We propose a dual-band achromatic focusing metasurface based on polarization multiplexing and dispersion engineering. An anisotropic resonant phase meta-atom is designed to realize independent nonlinear phase manipulation along the orthogonal directions. Achromatic focusing metasurface and broadband reflectarray antenna are further constructed in the microwave region with a computer-assisted particle swarm optimization algorithm. The standard deviation of focus offset at 11-16 GHz (for x-polarization) and 18-24 GHz (for y-polarization) are compressed to 19.83% and 16.60% of the dispersive metasurface, respectively. The radiation gains of the reflectarray antenna increase by an average of 19.49 dB and 15.08 dB in the broadband region compared with the bare standard rectangle waveguides. Furthermore, such an achromatic metasurface can be utilized to realize different functions with polarization selectivity and applied to other frequency ranges, which holds great promise in integrated optics.

11.
Opt Express ; 30(9): 14938-14947, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35473226

RESUMEN

In this paper, all-metallic reflective metasurfaces comprising S-shape streamline structures are proposed to achieve the photonic spin-Hall effect with average cross-polarization conversion efficiency exceeding ∼84% in the range of 8-14 µm. By comparing with all-metallic nanobricks, it is demonstrated that the electric field coupling could be enhanced by constructing a similar split ring resonator between adjacent unit elements to further improve its efficiency and bandwidth. As a proof of concept, the photonic spin Hall effect and spin-to-orbit angular momentum conversion could be observed by two metadevices with the maximum diffraction efficiency of ∼95.7%. Such an all-metallic configuration may provide a platform for various high-efficiency electromagnetic components, catenary optics, and practical applications.

12.
Opt Express ; 30(20): 36949-36959, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258614

RESUMEN

Beam scanning based on metasurfaces is widely discussed in recent years owing to its high integration, lightweight, and low cost. However, most of the reported beam scanning metasurfaces operate in either transmission or reflection mode. Here, we propose a full-space beam scanning metasurface based on transmission reflection switchable meta-atom and the quadratic phase distribution. As a validation, a metasurface array with 400 units (20 × 20) was experimentally demonstrated. Beam scanning of ± 35 ° was achieved in both transmission mode and reflection mode. A larger scanning angle (± 45 °) was further verified simulatively with a 900-units (30 × 30) array. The method provides an avenue for expanding the space of electromagnetic wave manipulation and may have great potential in wireless communication and radar detection.

13.
Opt Express ; 30(10): 17259-17269, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221552

RESUMEN

Visible-infrared compatible camouflage is significant to enhance the equipment survivability through counteracting the modern detecting and surveillance systems. However, there are still great challenges in simultaneously achieving multispectral camouflage with high transmittance in visible, low emissivity in the atmospheric windows and high emissivity in the non-atmospheric window, which can be attributed to the mutual influence and restriction within these characteristics. Here, we proposed an optically transparent infrared selective emitter (OTISE) composed of three Ag-ZnO-Ag disk sub-cells with anti-reflection layers, which can synchronously improve the visible transmittance and widen absorption bandwidth in the non-atmospheric window by enhancing and merging resonance response of multi-resonators. Test results reveal that low emissivity in infrared atmospheric windows, high emissivity in the 5-8 µm non-atmospheric window and high optical transparency have been obtained. In addition, the radiative flux of OTISE in 3-5 µm and 8-14 µm are respectively 34.2% and 9.3% of that of blackbody and the energy dissipation of OTISE is 117% of that of chromium film. Meanwhile, it keeps good optical transparency due to the ultrathin Ag film. This work provides a novel strategy to design the optically transparent selective emissive materials, implying a promising application potential in visible and infrared camouflage technology.

14.
J Environ Manage ; 305: 114394, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995939

RESUMEN

As most of the runoff resulting from snow-ice melt is related to climate change factors in the arid region of northwest China, the risk to water resource systems threatens the socio-economic and ecological environment and is becoming increasingly prevalent. Therefore, we explored the risks of water resource shortages for different periods (2010, 2020, and 2030) in the Aksu River basin (ARB) in the northwest arid region of China by reconstructing a risk model based on the framework proposed by the Intergovernmental Panel on Climate Change (IPCC) with an improved vulnerability (V) module and a more suitable hazard probability in the cost module. The major conclusions are as follows: (1) the simulation of the Community Land Model-Distributed Time Variant Gain Model (CLM-DTVGM) and the Vegetation Interface Processes model (VIP) was suitable for the eco-hydrological processes in the ARB under climate change (i.e., R2 ≥ 0.583; Nash coefficient ≥0.371; and relative mean standard ≤155.727 for CLM-DTVGM; R2 = 0.798 for VIP); (2) the vulnerability of the water resource system in the ARB was medium in 2010, and dropped to a medium-low to non-vulnerable level in 2020 before increasing in 2030 under different Representative Concentration Pathways (RCP) (RCP2.6, RCP4.5, and RCP8.5); and (3) there was a medium-low risk of water resource shortages in the ARB in 2010 (i.e., 0.246), and although the risk of water resource shortages decreased in 2020 due to the increasing water supply from mountainous areas, the risk predicted to increase significantly in 2030, to a medium-high risk level. This study is critical for accurately predicting and understanding the impact of climate change on water resource systems as well as on the drought risk in arid regions.


Asunto(s)
Cambio Climático , Recursos Hídricos , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , China , Medición de Riesgo , Ríos
15.
Opt Express ; 29(12): 18351-18361, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34154093

RESUMEN

In this work, we propose dynamic holography based on metasurfaces combining spatial channel multiplexing and polarization multiplexing. In this design, spatial channels can provide up to 3N holographic frames, which not only increase the possibility of dynamic control but also increase the privacy of the holographic display. This design is also sensitive to polarization, so it further expands the spatial channel capacity. For the left and right circular polarization incident light, there are different dynamic pixel schemes. Therefore, this approach holds promise in the holographic display, optical storage, optics communication, optical encryption, and information processing.

16.
Opt Express ; 29(4): 5947-5958, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33726126

RESUMEN

Conventional achromatic optical systems are matured to achieve effective chromatic aberration correction and diffraction-limited resolution by the multiple bulky lenses. The emergence of the super-oscillation phenomenon provides an effective method for non-invasive far-field super-resolution imaging. Nevertheless, most super-oscillatory lenses are significantly restricted by the chromatic aberration due to the reliance on delicate interference; on the other hand, most achromatic lenses cannot break the diffraction limit. In this article, a single-layer broadband achromatic metasurface comprising sub-wavelength anisotropic nanostructures has been proposed to achieve sub-diffraction focusing with a focal length of f=60 µm and a diameter of 20 µm in the visible ranging from 400 nm to 700 nm, which are capable of generating sub-diffraction focal spots under the left-handed circularly polarized incident light with arbitrary wavelength in the working bandwidth at the same focal plane. This method may find promising potentials in various applications such as super-resolution color imaging, light field cameras, and machine vision.

17.
Opt Express ; 29(7): 10181-10191, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33820151

RESUMEN

We investigate the topology optimization of geometric phase metasurfaces for wide-angle and high-efficiency deflection, where adjoint-based multi-object optimization approach is adopted to improve the absolute efficiency while maintaining the polarization conversion characteristic of geometric phase metasurfaces. We show that, for the initially discrete geometric phase metasurfaces with different materials and working wavelengths, the topology shapes gradually evolve from discrete structures to quasi-continuous arrangements with the increment of optimization iteration operations. More importantly, the finally optimized metasurfaces manifest as catenary-like structure, providing significant improvements of absolute efficiency. Furthermore, for the initial structure with catenary distribution, the corresponding optimized metasurface also has a catenary-like topology shape. Our results on the topology-optimized geometric phase metasurfaces reveal that, from the perspective of numerical optimization, the continuous catenary metasurfaces is superior to the discrete geometric phase metasurfaces.

18.
Opt Express ; 29(7): 9991-9999, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33820160

RESUMEN

Based on the delicate interference behavior of light in the far field, the optical super-oscillatory phenomenon has been successfully applied in non-invasive sub-diffraction focusing and super-resolution imaging in recent years. However, the optical super-oscillatory field is particularly sensitive to the change of incident angle, leading to a limited field of view for super-resolution imaging. In this paper, a super-oscillatory metasurface doublet is proposed to achieve far-field sub-diffraction focusing with an incident angle of up to 25°. The constructed doublet, consisting of high-aspect-ratio rectangular nanopillars with high efficiency, is further demonstrated through a full-wave simulation, and the numerical results indicate that the sub-diffraction foci with about 0.75 times of the diffraction limit is achieved for different incident angles. The proposed super-oscillatory metasurface doublet may find intriguing applications in label-free super-resolution microscopy and optical precise fabrication.

19.
Phys Rev Lett ; 126(18): 183902, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34018802

RESUMEN

Pancharatnam-Berry geometric phase has attracted enormous interest in subwavelength optics and electromagnetics during the past several decades. Traditional theory predicts that the geometric phase is equal to twice the rotation angle of anisotropic elements. Here, we show that high-order geometric phases equal to multiple times the rotation angle could be achieved by meta-atoms with highfold rotational symmetries. As a proof of concept, the broadband angular spin Hall effect of light and optical vortices is experimentally demonstrated by using plasmonic metasurfaces consisting of space-variant nanoapertures with C2, C3, and C5 rotational symmetries. The results provide a fundamentally new understanding of the geometric phase as well as light-matter interaction in nanophotonics.

20.
Opt Express ; 28(24): 36445-36454, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33379737

RESUMEN

In this paper, a highly integrated array-based imaging system, composed of a lens array and a metasurface array, is proposed to achieve multispectral real-time imaging within a wide range of 400-1100 nm numerically. Each channel has an achromatic bandwidth of 50 nm and an aperture of about 5 mm, with the system average efficiency reaching over 91%. It breaks the restrictions of cumbersome volumes and limited materials that deteriorate the performance of conventional systems, facilitating miniaturization and integration. Moreover, the design method is also suitable for other spectral bands, widening applications of metasurfaces in multispectral imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA