Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Nano Lett ; 24(27): 8369-8377, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38885458

RESUMEN

The metal-semiconductor interface fabricated by conventional methods often suffers from contamination, degrading transport performance. Herein, we propose a one-pot chemical vapor deposition (CVD) process to create a two-dimensional (2D) MoO2-MoSe2 heterostructure by growing MoO2 seeds under a hydrogen environment, followed by depositing MoSe2 on the surface and periphery. The ultraclean interface is verified by cross-sectional scanning transmission electron microscopy and photoluminescence. Along with the high work function of semimetallic MoO2 (Ef = -5.6 eV), a high-rectification Schottky diode is fabricated based on this heterostructure. Furthermore, the Schottky diode exhibits an excellent photovoltaic effect with a high open-circuit voltage of 0.26 eV and ultrafast photoresponse, owing to the naturally formed metal-semiconductor contact with suppressed pinning effect. Our method paves the way for the fabrication of an ultraclean 2D metal-semiconductor interface, without defects or contamination, offering promising prospects for future nanoelectronics.

2.
Nano Lett ; 24(27): 8277-8286, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38949123

RESUMEN

The controlled vapor-phase synthesis of two-dimensional (2D) transition metal dichalcogenides (TMDs) is essential for functional applications. While chemical vapor deposition (CVD) techniques have been successful for transition metal sulfides, extending these methods to selenides and tellurides often faces challenges due to uncertain roles of hydrogen (H2) in their synthesis. Using CVD growth of MoSe2 as an example, this study illustrates the role of a H2-free environment during temperature ramping in suppressing the reduction of MoO3, which promotes effective vaporization and selenization of the Mo precursor to form MoSe2 monolayers with excellent crystal quality. As-synthesized MoSe2 monolayer-based field-effect transistors show excellent carrier mobility of up to 20.9 cm2/(V·s) with an on-off ratio of 7 × 107. This approach can be extended to other TMDs, such as WSe2, MoTe2, and MoSe2/WSe2 in-plane heterostructures. Our work provides a rational and facile approach to reproducibly synthesize high-quality TMD monolayers, facilitating their translation from laboratory to manufacturing.

3.
Small ; 20(2): e2308270, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37948414

RESUMEN

It is an urgent problem to realize reliable microwave absorption materials (MAMs) with low density. To address this issue, a series of controlled experiments w ere carried out, which indicated that the tubular structure enables excellent microwave absorption properties with a lower powder filling rate. This performance is attributable to the combined dielectric and magnetic loss mechanisms provided by Co/C and the interface polarization facilitated by multiple heterogeneous interfaces. Particularly, Co@C nanotubes, benefiting from the enhanced heterointerface polarization due to their abundant specific surface area and the reduced electron migration barrier induced by their 1D stacked structure, effectively achieved a dual enhancement of dielectric loss and polarization loss at lower powder filling ratios. Furthermore, the magnetic coupling effect of magnetic nanoparticle arrays in tubular structures is demonstrated by micromagnetic simulation, which have been few reported elsewhere. These propertied enable Co@C nanotubes to achieve minimum reflection loss and maximum effective absorption broadband values of 61.0 dB and 5.5 GHz, respectively, with a powder filling ratio of 20 wt% and a thickness of 1.94 mm. This study reveals the significance of designing 1D structures in reducing powder filling ratio and matching thickness, providing valuable insights for developing MAMs with different microstructures.

4.
Nano Lett ; 23(11): 4741-4748, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37196055

RESUMEN

Wafer-scale monolayer two-dimensional (2D) materials have been realized by epitaxial chemical vapor deposition (CVD) in recent years. To scale up the synthesis of 2D materials, a systematic analysis of how the growth dynamics depend on the growth parameters is essential to unravel its mechanisms. However, the studies of CVD-grown 2D materials mostly adopted the control variate method and considered each parameter as an independent variable, which is not comprehensive for 2D materials growth optimization. Herein, we synthesized a representative 2D material, monolayer hexagonal boron nitride (hBN), on single-crystalline Cu (111) by epitaxial chemical vapor deposition and varied the growth parameters to regulate the hBN domain sizes. Furthermore, we explored the correlation between two growth parameters and provided the growth windows for large flake sizes by the Gaussian process. This new analysis approach based on machine learning provides a more comprehensive understanding of the growth mechanism for 2D materials.

5.
Nano Lett ; 23(23): 11034-11042, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38038404

RESUMEN

WSe2 has a high mobility of electrons and holes, which is an ideal choice as active channels of electronics in extensive fields. However, carrier-type tunability of WSe2 still has enormous challenges, which are essential to overcome for practical applications. In this work, the direct growth of n-doped few-layer WSe2 is realized via in situ defect engineering. The n-doping of WSe2 is attributed to Se vacancies induced by the H2 flow purged in the cooling process. The electrical measurements based on field effect transistors demonstrate that the carrier type of WSe2 synthesized is successfully transferred from the conventional p-type to the rarely reported n-type. The electron carrier concentration is efficiently modulated by the concentration of H2 during the cooling process. Furthermore, homomaterial inverters and self-powered photodetectors are fabricated based on the doping-type-tunable WSe2. This work reveals a significant way to realize the controllable carrier type of two-dimensional (2D) materials, exhibiting great potential in future 2D electronics engineering.

6.
Small ; 19(23): e2208266, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36890784

RESUMEN

Heterojunctions coupled into micro-mesoscopic structures is an attractive strategy to optimize the light harvesting and carrier separation of semiconductor photocatalysts. A self-templating method of ion exchange is reported to synthesize an exquisite hollow cage-structured Ag2 S@CdS/ZnS that direct Z-scheme heterojunction photocatalyst. On the ultrathin shell of the cage, Ag2 S, CdS, and ZnS with Zn-vacancies (VZn ) are arranged sequentially from outside to inside. Among them, the photogenerated electrons are excited by ZnS to the VZn energy level and then recombine with the photogenerated holes that are generated by CdS, while the electrons remained in the CdS conduction band are further transferred to Ag2 S. The ingenious cooperation of the Z-scheme heterojunction with the hollow structure optimizes the photogenerated charges transport channel, spatially separated the oxidation and reduction half-reactions, decreases the charge recombination probability, and simultaneously improves the light harvesting efficiency. As a result, the photocatalytic hydrogen evolution activity of the optimal sample is 136.6 and 17.3 times higher than that of cage-like ZnS with VZn and CdS by, respectively. This unique strategy demonstrates the tremendous potential of the incorporation of heterojunction construction to morphology design of photocatalytic materials, and also provided a reasonable route for designing other efficient synergistic photocatalytic reactions.

7.
Small ; : e2307587, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084456

RESUMEN

2D metal chalcogenides (MCs) have garnered significant attention from both scientific and industrial communities due to their potential in developing next-generation functional devices. Vapor-phase deposition methods have proven highly effective in fabricating high-quality 2D MCs. Nevertheless, the conventionally high thermal budgets required for synthesizing 2D MCs pose limitations, particularly in the integration of multiple components and in specialized applications (such as flexible electronics). To overcome these challenges, it is desirable to reduce the thermal energy requirements, thus facilitating the growth of various 2D MCs at lower temperatures. Numerous endeavors have been undertaken to develop low-temperature vapor-phase growth techniques for 2D MCs, and this review aims to provide an overview of the latest advances in low-temperature vapor-phase growth of 2D MCs. Initially, the review highlights the latest progress in achieving high-quality 2D MCs through various low-temperature vapor-phase techniques, including chemical vapor deposition (CVD), metal-organic CVD, plasma-enhanced CVD, atomic layer deposition (ALD), etc. The strengths and current limitations of these methods are also evaluated. Subsequently, the review consolidates the diverse applications of 2D MCs grown at low temperatures, covering fields such as electronics, optoelectronics, flexible devices, and catalysis. Finally, current challenges and future research directions are briefly discussed, considering the most recent progress in the field.

8.
Small ; 19(52): e2304271, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37649209

RESUMEN

Stem-cell-based therapeutics have shown immense potential in treating various diseases that are currently incurable. In particular, partial recovery of Parkinson's disease, which occurs due to massive loss or abnormal functionality of dopaminergic (DAnergic) neurons, through the engraftment of stem-cell-derived neurons ex vivo is reported. However, precise assessment of the functionality and maturity of DAnergic neurons is still challenging for their enhanced clinical efficacy. Here, a novel conductive cell cultivation platform, a graphene oxide (GO)-incorporated metallic polymer nanopillar array (GOMPON), that can electrochemically detect dopamine (DA) exocytosis from living DAnergic neurons, is reported. In the cell-free configuration, the linear range is 0.5-100 µm, with a limit of detection of 33.4 nm. Owing to its excellent biocompatibility, a model DAnergic neuron (SH-SY5Y cell) can be cultivated and differentiated on the platform while their DA release can be quantitatively measured in a real-time and nondestructive manner. Finally, it is showed that the functionality of the DAnergic neurons derived from stem cells can be precisely assessed via electrochemical detection of their DA exocytosis. The developed GOMPON is highly promising for a wide range of applications, including real-time monitoring of stem cell differentiation into neuronal lineages, evaluating differentiation protocols, and finding practical stem cell therapies.


Asunto(s)
Grafito , Neuroblastoma , Humanos , Polímeros , Dopamina , Pirroles , Oro , Neuronas , Técnicas Electroquímicas
9.
Nano Lett ; 22(24): 10167-10175, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36475688

RESUMEN

Vanadium diselenide (VSe2) exhibits versatile electronic and magnetic properties in the trigonal prismatic (H-) and octahedral (T-) phases. Compared to the metallic T-phase, the H-phase with a tunable semiconductor property is predicted to be a ferrovalley material with spontaneous valley polarization. Herein we report an epitaxial growth of the monolayer 2D VSe2 on a mica substrate via the chemical vapor deposition (CVD) method by introducing salt in the precursor. Our first-principles calculations suggest that the monolayer H-phase VSe2 with a large lateral size is thermodynamically favorable. The honeycomb-like structure and the broken symmetry are directly observed by spherical aberration-corrected scanning transmission electron microscopy (STEM) and confirmed by giant second harmonic generation (SHG) intensity. The p-type transport behavior is further evidenced by the temperature-dependent resistance and field-effect device study. The present work introduces a new phase-stable 2D transition metal dichalcogenide, opening the prospect of novel electronic and spintronics device design.

10.
Small ; 18(29): e2202229, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35736629

RESUMEN

Atomically thin monolayer semiconducting transition metal dichalcogenides (TMDs), exhibiting direct band gap and strong light-matter interaction, are promising for optoelectronic devices. However, an efficient band alignment engineering method is required to further broaden their practical applications as versatile optoelectronics. In this work, the band alignment of two vertically stacked monolayer TMDs using the chemical vapor deposition (CVD) method is effectively tuned by two strategies: 1) formulating the compositions of MoS2(1-x) Se2x alloys, and 2) varying the twist angles of the stacked heterobilayer structures. Photoluminescence (PL) results combined with density functional theory (DFT) calculation show that by changing the alloy composition, a continuously tunable band alignment and a transition of type II-type I-type II band alignment of TMD heterobilayer is achieved. Moreover, only at moderate (10°-50°) twist angles, a PL enhancement of 28%-110% caused by the type I alignment is observed, indicating that the twist angle is coupled with the global band structure of heterobilayer. A heterojunction device made with MoS0.76 Se1.24 /WS2 of 14° displays a significantly high photoresponsivity (55.9 A W-1 ), large detectivity (1.07 × 1010 Jones), and high external quantum efficiency (135%). These findings provide engineering tools for heterostructure design for their application in optoelectronic devices.

11.
Nano Lett ; 21(2): 1161-1168, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33411539

RESUMEN

Corrosion of metals in atmospheric environments is a worldwide problem in industry and daily life. Traditional anticorrosion methods including sacrificial anodes or protective coatings have performance limitations. Here, we report atomically thin, polycrystalline few-layer graphene (FLG) grown by chemical vapor deposition as a long-term protective coating film for copper (Cu). A six-year old, FLG-protected Cu is visually shiny and detailed material characterizations capture no sign of oxidation. The success of the durable anticorrosion film depends on the misalignment of grain boundaries between adjacent graphene layers. Theoretical calculations further found that corrosive molecules always encounter extremely high energy barrier when diffusing through the FLG layers. Therefore, the FLG is able to prevent the corrosive molecules from reaching the underlying Cu surface. This work highlights the interesting structures of polycrystalline FLG and sheds insight into the atomically thin coatings for various applications.

12.
J Am Chem Soc ; 143(5): 2433-2440, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33507070

RESUMEN

Ammonia electro-oxidation is an extremely significant reaction with regards to the nitrogen cycle, hydrogen economy, and wastewater remediation. The design of efficient electrocatalysts for use in the ammonia electro-oxidation reaction (AOR) requires comprehensive understanding of the mechanism and intermediates involved. In this study, aggregation-induced emission (AIE), a robust fluorescence sensing platform, is employed for the sensitive and qualitative detection of hydrazine (N2H4), one of the important intermediates during the AOR. Here, we successfully identified N2H4 as a main intermediate during the AOR on the model Pt/C electrocatalyst using 4-(1,2,2-triphenylvinyl)benzaldehyde (TPE-CHO), an aggregation-induced emission luminogen (AIEgen). We propose the AOR mechanism for Pt with N2H4 being formed during the dimerization process (NH2 coupling) within the framework of the Gerischer and Mauerer mechanism. The unique chemodosimeter approach demonstrated in this study opens a novel pathway for understanding electrochemical reactions in depth.

13.
Small ; 17(41): e2103596, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34510750

RESUMEN

Graphene oxide (GO) has proven to be a highly promising material across various biomedical research avenues, including cancer therapy and stem cell-based regenerative medicine. However, creating a uniform GO coating as a thin layer on desired substrates has been considered challenging owing to the intrinsic variability of the size and shape of GO. Herein, a new method is introduced that enables highly uniform GO thin film (UGTF) fabrication on various biocompatible substrates. By optimizing the composition of the GO suspension and preheating process to the substrates, the "coffee-ring effect" is significantly suppressed. After applying a special postsmoothing process referred to as the low-oxygen concentration and low electrical energy plasma (LOLP) treatment, GO is converted to small fragments with a film thickness of up to several nanometers (≈5.1 nm) and a height variation of only 0.6 nm, based on atomic force microscopy images. The uniform GO thin film can also be generated as periodic micropatterns on glass and polymer substrates, which are effective in one-step micropatterning of both antibodies and mouse melanoma cells (B16-F10). Therefore, it can be concluded that the developed UGTF is useful for various graphene-based biological applications.


Asunto(s)
Grafito , Animales , Materiales Biocompatibles , Ratones , Microscopía de Fuerza Atómica , Polímeros
14.
Small ; 17(15): e2002436, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32954643

RESUMEN

In this study, a multifunctional platform that enables the highly efficient formation of 3D multicellular cancer spheroids and precise real-time assessments of the anticancer effects of curcumin in a brain tumor coculture model is reported. A highly conductive gold nanostructure (HCGN) is fabricated to facilitate cancer spheroid formation without using anti-cell adhesion molecules. A neuroblastoma (SH-SY5Y) and glioblastoma (U-87MG) coculture model is generated on HCGN with a specific cell-to-cell ratio (SH-SY5Y: U-87MG = 1:1), and their redox behaviors are successfully measured without destroying the distinct 3D structure of the multicellular spheroids. Using electrochemical signals as an indicator of spheroid viability, the effects of potential anticancer compounds on cocultured spheroids are further assessed. Remarkably, decreased cell viability in 3D spheroids caused by a low concentration of curcumin (30 µM) is detectable using the electrochemical method (29.4%) but not with a conventional colorimetric assay (CCK-8). The detection is repeated more than ten times for both short- (63 h) and long-term cultivation (144 h) without damaging the spheroids, enabling real-time, non-destructive pharmacokinetic analysis of various drug candidates. Therefore, it can be concluded that the hybrid platform is a highly promising, precise, and high-throughput drug screening tool based on 3D cell cultivation.


Asunto(s)
Neoplasias Encefálicas , Curcumina , Nanoestructuras , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Oro , Humanos , Esferoides Celulares
15.
Nano Lett ; 20(5): 3844-3851, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32283937

RESUMEN

The further improvement of sodium ion batteries requires the elucidation of the mechanisms pertaining to reversibility, which allows the novel design of the electrode structure. Here, through a hydrogel-embedding method, we are able to confine the growth of few-layer SnS2 nanosheets between a nitrogen- and sulfur-doped carbon nanotube (NS-CNT) and amorphous carbon. The obtained carbon-sandwiched SnS2 nanosheets demonstrate excellent sodium storage properties. In operando small-angle X-ray scattering combined with the ex situ X-ray absorption near edge spectra reveal that the redox reactions between SnS2/NS-CNT and the sodium ion are highly reversible. On the contrary, the nanostructure evolution is found to be irreversible, in which the SnS2 nanosheets collapse, followed by the regeneration of SnS2 nanoparticles. This work provides operando insights into the chemical environment evolution and structure change of SnS2-based anodes, elucidating its reversible reaction mechanism, and illustrates the significance of engineered carbon support in ensuring the electrode structure stability.

16.
Analyst ; 145(2): 675-684, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31803868

RESUMEN

Curcumin, which is produced by the medicinal herbaceous plant Curcuma longa, has been widely investigated for use as a potential anticancer drug. In this study, the potential toxicity of curcumin-carrying nanoliposomes (curcumin-NLC) toward human stomach cancer cells (MKN-28) was investigated using a new cell-based electrochemical sensing platform. To satisfy both biocompatibility and electroconductivity of the electrodes, the density of the gold nanostructure and the coating conditions of extracellular matrix proteins (fibronectin and collagen) were optimized. The developed platform enabled the successful adhesion and long-term growth of stomach cancer cells on the chip surface, allowing label-free and real-time monitoring of cell viability in a quantitative manner. According to the electrochemical results, both bare curcumin and curcumin-NLC showed toxicity toward MKN-28 cells in the concentration range of 10-100 µM, which was consistent with the results obtained from a conventional colorimetric method (CCK-8). Remarkably, at a low concentration range (<50 µM), this electrochemical platform determined the decrease in cell viability to be approximately 22.8%, 33.9% and 53.1% in the presence of 10, 30, and 50 µM of curcumin-NLC, respectively, compared with the 1.3%, 18.5%, and 28.1% determined by CCK-8, making it 1.7-2 times more sensitive than the conventional colorimetric assay. Hence, it can be concluded that the newly developed fibronectin-coated electroconductive platform is highly promising as an electrochemical detection tool for the sensitive and precise assessment of the anticancer effects of various food-derived compounds with low toxicity.


Asunto(s)
Antineoplásicos/farmacología , Curcumina/farmacología , Portadores de Fármacos/química , Técnicas Electroquímicas/métodos , Liposomas/química , Nanopartículas del Metal/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas Electroquímicas/instrumentación , Electrodos , Fibronectinas/química , Oro/química , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Compuestos de Estaño/química
17.
J Am Chem Soc ; 141(19): 7670-7674, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31058498

RESUMEN

Chemical vapor deposition (CVD) enables the large-scale growth of high-quality graphene film and exhibits considerable potential for the industrial production of graphene. However, CVD-grown graphene film contains surface contamination, which in turn hinders its potential applications, for example, in electrical and optoelectronic devices and in graphene-membrane-based applications. To solve this issue, we demonstrated a modified gas-phase reaction to achieve the large-scale growth of contamination-free graphene film, i.e., superclean graphene, using a metal-containing molecule, copper(II) acetate, Cu(OAc)2, as the carbon source. During high-temperature CVD, the Cu-containing carbon source significantly increased the Cu content in the gas phase, which in turn suppressed the formation of contamination on the graphene surface by ensuring sufficient decomposition of the carbon feedstock. The as-received graphene with a surface cleanness of about 99% showed enhanced optical and electrical properties. This study opens a new avenue for improving graphene quality with respect to surface cleanness and provides new insight into the mechanism of graphene growth through the gas-phase reaction pathway.

18.
Nano Lett ; 18(6): 3509-3515, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29768011

RESUMEN

All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity.


Asunto(s)
Técnicas Biosensibles/instrumentación , ADN/análisis , Grafito/química , Técnicas Biosensibles/métodos , Sondas de ADN/química , Diseño de Equipo , Hibridación de Ácido Nucleico/métodos , Transistores Electrónicos
19.
Nano Lett ; 18(10): 6340-6346, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30192558

RESUMEN

Ferroelectric thin film has attracted great interest for nonvolatile memory applications and can be used in either ferroelectric Schottky diodes or ferroelectric tunneling junctions due to its promise of fast switching speed, high on-to-off ratio, and nondestructive readout. Two-dimensional α-phase indium selenide (In2Se3), which has a modest band gap and robust ferroelectric properties stabilized by dipole locking, is an excellent candidate for multidirectional piezoelectric and switchable photodiode applications. However, the large-scale synthesis of this material is still elusive, and its performance as a ferroresistive memory junction is rarely reported. Here, we report the low-temperature molecular-beam epitaxy (MBE) of large-area monolayer α-In2Se3 on graphene and demonstrate the use of α-In2Se3 on graphene in ferroelectric Schottky diode junctions by employing high-work-function gold as the top electrode. The polarization-modulated Schottky barrier formed at the interface exhibits a giant electroresistance ratio of 3.9 × 106 with a readout current density of >12 A/cm2, which is more than 200% higher than the state-of-the-art technology. Our MBE growth method allows a high-quality ultrathin film of In2Se3 to be heteroepitaxially grown on graphene, thereby simplifying the fabrication of high-performance 2D ferroelectric junctions for ferroresistive memory applications.

20.
Angew Chem Int Ed Engl ; 58(41): 14446-14451, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31286615

RESUMEN

Contamination commonly observed on the graphene surface is detrimental to its excellent properties and strongly hinders its application. It is still a great challenge to produce large-area clean graphene film in a low-cost manner. Herein, we demonstrate a facile and scalable chemical vapor deposition approach to synthesize meter-sized samples of superclean graphene with an average cleanness of 99 %, relying on the weak oxidizing ability of CO2 to etch away the intrinsic contamination, i.e., amorphous carbon. Remarkably, the elimination of amorphous carbon enables a significant reduction of polymer residues in the transfer of graphene films and the fabrication of graphene-based devices and promises strongly enhanced electrical and optical properties of graphene. The facile synthesis of large-area superclean graphene would open the pathway for both fundamental research and industrial applications of graphene, where a clean surface is highly needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA