Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Am Chem Soc ; 146(13): 9302-9310, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506150

RESUMEN

Tailoring materials with prescribed properties and regular structures is a critical and challenging research topic. Early transition metals were found to form supermagic M8C12 metallocarbohedrenes (Met-Cars); however, stable metal carbides are not limited to this common stoichiometry. Utilizing self-developed deep-ultraviolet laser ionization mass spectrometry, here, we report a strategy to generate new titanium carbides by reacting pure Tin clusters with acetylene. Interestingly, two products corresponding to Ti17C2 and Ti19C10 exhibit superior abundances in addition to the Ti8C12 Met-Cars. Using global-minimum search, the structures of Ti17C2 and Ti19C10 are determined to be an ellipsoidal D4d and a rod-shaped D5h geometry, respectively, both with carbon-capped Ti4C moieties and superatomic features. We illustrate the electronic structures and bonding nature in these carbon-doped superatoms concerning their enhanced stability and local aromaticity, shedding light on a new class of metal-carbide nanomaterials with atomic precision.

2.
Small ; : e2404638, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240073

RESUMEN

The size dependence of metal cluster reactions frequently reveals valuable information on the mechanism of nanometal catalysis. Here, the reactivity of the Ptn + (n = 1-40) clusters with N2O is studied and a significant dependence on the size of these clusters is noticed. Interestingly, the small Ptn + clusters like Pt3 + and Pt4 + are inclined to form N2O complexes; some larger clusters, such as Pt19 +, Pt21 +, and Pt23 +, appear to be unreactive; however, the others such as Pt3 , 9,15 + and Pt18 + are capable of decomposing N2O. While Pt9 + rapidly reacts with N2O to form a stable quasitetrahedron Pt9O+ product, Pt18 + experiences a series of N2O decompositions to produce Pt18O1-7 +. Utilizing high-precision theoretical calculations, it is shown how the atomic structures and active sites of Ptn + clusters play a vital role in determining their reactivity. Cooperative dual Lewis-acid sites (CDLAS) can be achieved on specific metal clusters like Pt18 +, rendering accelerated N2O decomposition via both N- and O-bonding on the neighboring Pt atoms. The influence of CDLAS on the size-dependent reaction of Pt clusters with N2O is illustrated, offering insights into cluster catalysis in reactions that include the donation of electron pairs.

3.
Chemphyschem ; 25(10): e202300715, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38450926

RESUMEN

The properties of sub-nano metal clusters are governed by quantum confinement and their large surface-to-bulk ratios, atomically precise compositions and geometric/electronic structures. Advances in metal clusters lead to new opportunities in diverse aspects of sciences including chemo-sensing, bio-imaging, photochemistry, and catalysis. Naked metal clusters having synergic multiple active sites and coordinative unsaturation and tunable stability/activity enable researchers to design atomically precise metal catalysts with tailored catalysis for different reactions. Here we summarize the progress of ligand-free naked metal clusters for catalytic applications. It is anticipated that this review helps to better understand the chemistry of small metal clusters and facilitates the design and development of new catalysts for potential applications.

4.
Phys Chem Chem Phys ; 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39484736

RESUMEN

This study examines the chemical reactivity of niobium clusters with carbon dioxide (CO2), with an emphasis on the analysis of the ensuing products Nb4O6+ and Nb3O6-, which show up in the cationic and anionic mass spectra, respectively. Using density functional theory (DFT) calculations, we demonstrate the reactivity of the Nbn± clusters with CO2 and reveal distinct stabilization mechanisms for the two prominent products. The stability of Nb3O6- is determined by the existence of ten π bonds pertaining to π-electron delocalization, which conforms to the nxcπ electron configuration model. Despite having only a one-atom distinction, Nb4O6+ exhibits superatomic electron shells embodying superatom stability. The divergent stabilizing mechanisms found in Nb4O6+ and Nb3O6- illustrate the intricate nature of cluster chemistry and the significance of electronic structure in governing cluster stability and reactivity.

5.
Phys Chem Chem Phys ; 26(12): 9586-9592, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38465400

RESUMEN

The reactivity of Nbn+ (1 ≤ n ≤ 21) clusters with B2H6 is studied by using a self-developed multiple-ion laminar flow tube reactor combined with a triple quadrupole mass spectrometer (MIFT-TQMS). The Nbn+ clusters were generated by a magnetron sputtering source and reacted with the B2H6 gas under fully thermalized conditions in the downstream flow tube where the reaction time was accurately controlled and adjustable. The complete and partial dehydrogenation products NbnB1-4+ and NbnB1-4H1,2,4+ were detected, indicative of the removal of H2 and likely BHx moieties. Interestingly, these NbnB1-4+ and NbnB1-4H1,2,4+ products are limited to 3 ≤ n ≤ 6, suggesting that the small Nbn+ clusters are relatively more reactive than the larger Nbn>6+ clusters under the same conditions. By varying the B2H6 gas concentrations and the reactant doses introduced into the flow tube, and by changing the reaction time, we performed a detailed analysis of the reaction dynamics in combination with the DFT-calculated thermodynamics. It is demonstrated that the lack of cooperative active sites on the Nb1+ cations accounts for the weakened dehydrogenation efficiency. Nb2+ forms partial dehydrogenation products at a faster rate. In contrast, the Nbn>6+ clusters are subject to more flexible vibrational relaxation which disperse the energy gain of B2H6-adsorption and thus are unable to overcome the energy barriers for subsequent hydrogen atom transfer and H2 release.

6.
J Phys Chem A ; 128(7): 1274-1279, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38334079

RESUMEN

Iodomethane and bromomethane (CH3I/CH3Br) are common chemicals, but their chemistry on nanometals is not fully understood. Here, we analyze the reactivity of Rhn+ (n = 3-30) clusters with halomethanes and unveil the spin effect and concentration dependence in the C-H and C-X bond activation. It is found that the reactions under halomethane-rich conditions differ from those under metal-rich conditions. Both CH3I and CH3Br undergo similar dehydrogenation on the Rhn+ clusters in the presence of small quantity reactants; however, different reactions are observed in the presence of sufficient CH3I/CH3Br, showing dominant Rh(CH3Br)x+ (x = 1-4) products but a series of RhnCxHyIz+ species (x = 1-4, y = 1-12, and z = 1-5) pertaining to H2, HI, or CH4 removal. Density functional theory calculations reveal that the dehydrogenation and demethanation of CH3Br are relatively less exothermic and will be deactivated by sufficient gas collisions if helium cooling takes away energy immediately; instead, the successive adsorption of CH3Br gives rise to a series of Rh(CH3Br)x+ species with accidental C-Br bond dissociation.

7.
J Am Chem Soc ; 145(49): 26908-26914, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38041728

RESUMEN

Ferromagnets constructed from nanometals of atomic precision are important for innovative advances in information storage, energy conversion, and spintronic microdevices. Considerable success has been achieved in designing molecular magnets, which, however, are challenging in preparation and may suffer from drawbacks on the incompatibility of high stability and strong ferromagnetism. Utilizing a state-of-the-art self-developed mass spectrometer and a homemade laser vaporization source, we have achieved a highly efficient preparation of pure iron clusters, and here, we report the finding of a strongly ferromagnetic metal-carbon cluster, Fe12C12-, simply by reacting the Fen- clusters with acetylene in proper conditions. The unique stability of this ferromagnetic Fe12C12- cluster is rooted in a plumb-bob structure pertaining to Jahn-Teller distortion. We classify Fe12C12- as a new member of metallo-carbohedrenes and elucidate its structural stability mechanism as well as its soft-landing deposition and magnetization measurements, providing promise for the exploration of potential applications.

8.
Chemistry ; 29(51): e202300167, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37358027

RESUMEN

We report a joint experimental and theoretical study on the stability and reactivity of Bin + (n=5-33) clusters. The alternating odd-even effect on the reaction rates of Bin + clusters with NO is observed, and Bi7 + finds the most inertness. First-principles calculation results reveal that the lowest energy structures of Bi6-9 + exhibit quasi-spherical geometry pertaining to the jellium shell model; however, the Bin + (n≥10) clusters adopt assembly structures. The prominent stability of Bi7 + is associated with its highly symmetric structure and superatomic states with a magic number of 34e closed shell. For the first time, we demonstrate that the unique s-p nonhybrid feature in bismuth rationalizes the stability of Bi6-9 + clusters within the jellium model, by filling the 6s electrons into the superatomic orbitals (forming "s-band"). Interestingly, the stability of 18e "s-band" coincides with the compact structure for Bin + at n≤9 but assembly structures for n≥10, showing an accommodation of the s electrons to the geometric structure. The atomic p-orbitals also allow to form superatomic orbitals at higher energy levels, contributing to the preferable structures of tridentate binding units. We illustrate the s-p nonhybrid nature accommodates the structure and superatomic states of bismuth clusters.

9.
Chemphyschem ; 24(10): e202200530, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-36807961

RESUMEN

The conversion of ethane into value-added chemicals under ambient conditions has attracted much attention but the mechanisms remain not fully understood. Here we report a study on the reaction of ethane with thermalized Nbn + clusters based on a multiple-ion laminar flow tube reactor combined with a triple quadrupole mass spectrometer (MIFT-TQMS). It is found that ethane reacts with Nbn + clusters to form both products of dehydrogenation and methane-removal (odd-carbon products). Combined with density functional theory (DFT) calculations, we studied the reaction mechanisms of the C-C bond activation and C-H bond cleavage on the Nbn + clusters. It is unveiled that hydrogen atom transfer (HAT) initiates the reaction process, giving rise to the formation of Nb-C bonds and an elongated C-C distance in the HNbn + CH2 CH3 motif. Subsequent reactions allow for C-C bond activation and a competitive HAT process which is associated with CH4 removal or H2 release, resulting in the production of the observed carbides.

10.
Phys Chem Chem Phys ; 25(2): 1196-1204, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36519573

RESUMEN

Catalyzing N2 reduction to ammonia under ambient conditions is known to be significant both in the fertilizer industry and life sciences. To unveil the synergy of multiple sites, here, we have studied the catalysis of ammonia synthesis using a typical Fe13 cluster and its doped systems, Fe12X (X = V, Cr, Mn, Co, Ni, Cu, Zn, Nb, Mo, Ru, and Rh). The energetics analysis showed that center substitution (X@Fe12) was favored while doping single V, Cr, Co, and Mo atoms, whereas Mn, Ni, Cu, Zn, Nb, Ru, and Rh tended to form shell-doped structures (Fe12X). Among all the 13 clusters, Fe12Nb exhibited the lowest activation energy for N2 dissociation; moreover, in the hydrogenation process, Fe12Nb could convert N2 to ammonia efficiently. We have fully illustrated the reaction dynamics and structural chemistry essence of these diverse 13-atom systems and propose Fe12Nb as an ideal candidate for catalytic ammonia synthesis.

11.
J Phys Chem A ; 127(26): 5556-5564, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37352269

RESUMEN

We report a joint experimental and theoretical study on the reactivity of Agn+ clusters with H2S, D2O, and NH3. Complete dehydrogenation products are observed for Agn+ reacting with H2S, but no dehydrogenation products are found for D2O or NH3 under the same reaction condition. Theoretical calculations elucidate why Agn+ clusters show different reactivities with these inorganic hydrides. NH3 shows strong coordination with Agn+, but the dehydrogenation reactions are unfavorable; in contrast, the fragile H-S bonds and stable AgnS+ products facilitate the hydrogen evolution of H2S on Agn+. We fully analyzed the metal-ligand interactions of Agn+ clusters with three molecules and illustrated the reaction dynamics and charge-transfer interactions and altered the superatomic states during the formation of cluster sulfides. We expect this study to benefit the design of stable environmentally friendly desulfurization catalysts and also the understanding of the mechanism on ligand-protected metal clusters in wet chemistry.

12.
J Phys Chem A ; 127(13): 2912-2920, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36976294

RESUMEN

Well-resolved Nbn- clusters are produced and reacted with ethene and propene via a downstream flow tube reactor. Interestingly, the Nbn- clusters readily react with ethene and propene to form dehydrogenation products; however, Nb15- shows up in the mass spectra with prominent mass abundance indicating its inertness to react with olefins. For this cluster, we conduct photoelectron velocity map imaging (VMI) experiments and verify the stability of Nb15- within a highly symmetrical rhombic dodecahedron structure. Theoretical studies show that the stability of the Nb15- cluster is correlated with its superatomic nature pertaining to both geometric and electronic shell closures. Notably, the superatomic 1s orbital is dominated by the 5s electron of the central Nb atom, while the other superatomic orbitals are contributed by s-d hybridization, especially a remarkable contribution of s-dz2 hybridization. Apart from the closed shells, the highly symmetric geometry of Nb15- is associated with a regular polyhedral structure directed by all rhombus facets, embodying a magic number for body-centered dodecahedra, indicative of enhanced stability as a double magic cluster free of olefin adsorption.

13.
Chemphyschem ; 23(17): e202200288, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35689533

RESUMEN

We have performed a study on the accommodation of nitrogen doping toward superatomic states of transition metal clusters. By reacting cobalt clusters with N2 in the presence of plasma radiation, a large number of odd-nitrogen clusters were observed, typically Co3 N2m-1 + (m=1-5) and Co4 N2m-1 + (m=1-6) series, showing N≡N bond cleavage in the mild plasma atmosphere. Interestingly, the Co3 N7 + , Co4 N9 + , and Co5 N9 + clusters exhibit prominent mass abundances. First-principles calculation results elucidate the stability of the diverse cobalt nitride clusters and find unique stability of Co4 N9 + with a swallow-kite structure of which four coordinated N2 molecules causes a significantly enlarged HOMO-LUMO gap, while the single N atom doping gives rise to superatomic states of 1S2 1P3 ||1D0 . We reveal an efficient dinitrogen activation strategy by reacting multiple N2 molecules with cobalt clusters under a plasma atmosphere.


Asunto(s)
Cobalto , Nitrógeno , Cobalto/química , Nitrógeno/química
14.
J Phys Chem A ; 126(29): 4801-4809, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35830281

RESUMEN

We report an in-depth study of the adsorption and reaction of NO with cationic Nbn+ (n = 1-20) clusters under thermalized conditions in a laminar flow tube reactor in tandem with a customized triple quadrupole mass spectrometer (FT-TQMS). It is found that the small-sized Nbn+ clusters (2 ≤ n ≤ 7) readily react with NO giving rise to dominant fragmentation products pertaining to the loss of a stable diatomic molecule NbO or NbN. In contrast, the reaction products of larger-sized clusters (n ≥ 10) proceed through diverse channels, including NO adsorption, N2/N2O release, and even NO2 formation. These experimental observations provided the incentive for us to dig deep into the reaction mechanism with the help of DFT calculations. In contrast to the NO-donation coordination in transition metal complexes, here the cationic Nbn+ clusters exhibit dominant electronic donation in initiating the reactions with NO molecules. We fully demonstrated the reaction rate constants, compared the reaction energy diagram of typical Nbn+ clusters, and unveiled the distinct interaction mechanism of niobium clusters available for NO activation and conversion.

15.
J Phys Chem A ; 126(7): 1123-1131, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35166550

RESUMEN

Methane dehydrogenation and C-C coupling under mild conditions are very important but challenging in chemistry. Utilizing a customized time of flight mass spectrometer combined with a magnetron sputtering (MagS) cluster source, here, we have conducted a study on the reactions of methane with small silver and copper clusters simply by introducing methane in argon as the working gas for sputtering. Interestingly, a series of [M(CnH2n)]+ (M = Cu and Ag; n = 2-12) clusters were observed, indicating high-efficiency methane dehydrogenation in such a plasma-assisted chamber system. Density functional theory calculations find the lowest energy structures of the [M(CnH2n)]+ series pertaining to olefins indicative of both C-H bond activation of methane and C-C bond coupling. We analyzed the interactions involved in the [Cu(CnH2n)]+ and [Ag(CnH2n)]+ (n = 1-6) clusters and demonstrated the reaction coordinates for the "Cu+ + CH4" and "Ag+ + CH4." It is illustrated that the presence of a second methane molecule enables us to reduce the necessary energy of dehydrogenation, which concurs with the experimental observation of an absence of the metal carbine products Cu+CH2 and Ag+CH2, which are short-lived. Also, it is elucidated that the higher-lying excitation states of Cu+ and Ag+ ions enable more favorable dehydrogenation process and C═C bond formation, shedding light on the plasma assistance of the essence.

16.
Phys Chem Chem Phys ; 23(29): 15766-15773, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34286767

RESUMEN

We report a study of the reactions of pure metal clusters Nbn- with dioxygen in the gas phase. It is found that the presence of low-concentration dioxygen reactants results in oxygen-addition products, whereas sufficient high-concentration dioxygen enables oxygen-etching reactions giving rise to molecular niobium oxides. Interestingly, in the presence of a suitable gas flow rate of an intermediate dioxygen concentration, a highly selective product Nb11O15- shows up in the mass spectra. Utilizing density functional theory (DFT) calculations, we have discussed the reactivities of Nbn- (3 ≤ n ≤ 14) clusters with oxygen, and unveiled the reasonable stability of Nb11O15- pertaining to its unique geometric structure with a D5h Nb@Nb10 core fully protected by 15 bridge-oxygen atoms. The oxygen-passivated Nb@Nb10O15- cluster exhibits a large HOMO-LUMO gap (1.46 eV) and effective multicenter bonds with remarkable superatom orbitals for all the 26 valence electrons of the Nb@Nb10 core corresponding to well-staggered energy levels. We illustrate the superatomic features in the Nb@Nb10 metallic core for which the adaptive natural density partitioning (AdNDP) analysis unveils thirteen 11c-2e bonds. Among them, one of the 11c-2e bonds accounts for the superatomic S orbital, three bonds correspond to superatomic P orbitals, another five display vivid D orbital characteristics, and the remaining four 11c-2e bonds are assigned to F orbital features. In addition, the net atomic charge of the center Nb atom is as high as -0.804 |e| rendering core-shell electrostatic interactions and the shielding effect of the Nb10O15 shell.

17.
Phys Chem Chem Phys ; 23(30): 16334-16340, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34313273

RESUMEN

Controllable synthesis of organometallic clusters in the gas phase is a topic of reasonable interest with precisely tunable properties depending on sizes, compositions, and intra-cluster charge-transfer interactions. Here, we have prepared small Agn+ and Cun+ clusters by using a customized magnetron sputtering (MagS) source and observed the gas-phase reactions with 2,2'-bipyridine. It is found that the small silver and copper clusters readily react with bipyridine and form products of [M-bpy1-2]+ (M = Ag, Cu). Quantum chemistry calculations reveal that the bipyridine in both [Ag-bpy1-2]+ and [Cu-bpy1-2]+ takes on cis-conformation with altered N-C-C-N dihedral angles, which is in contrast to the trans-conformation of a free 2,2'-bipyridine molecule itself. In order to unveil the principle of conformational transition, we have fully studied the interactions between the nitrogen atoms of bipyridine and the cationic Ag+ and Cu+, calculated the donor-acceptor orbital overlaps, and analyzed the correlation of their frontier molecular orbital energy levels. Furthermore, by using a soft-landing strategy, we have managed to deposit the [Cu-bpy2]+ complex onto the glass substrates coated with Ag nanoparticles, and recorded the surface-enhanced Raman scattering spectra.

18.
Phys Chem Chem Phys ; 23(2): 921-927, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33350400

RESUMEN

Vanadium cluster anions are highly reactive making the preparation of pure Vn- and the observation of their reactivity extremely challenging. Herein, well-resolved anionic Vn- clusters are prepared enabling an in-depth study on their reactions with O2 in the gas phase. While pure metal clusters of a magic number are not identified due to the strong V-O bonding, interestingly an unexpected oxide V11O15- was experimentally observed in surviving O2 etching reactions. First-principles theory calculations indicate that V11O15- possesses a body-centered pentagonal prism structure (D5h, ), with the V@V10 core fully protected by 15 oxygen bridges. Such an oxygen-protected metal cluster [V@V10O15]- exhibits typical superatom orbital features pertaining to the V@V10 core which shows effective metal-metal coordination bonding. Meanwhile, the high stability of [V@V10O15]- is reinforced by the V-O-V conjugation interactions which help to maintain the structural integrity, resulting in 3D inorganic aromaticity. This finding of such an oxygen-passivated superatom cluster sheds light on the bonding nature in ligand-protected metal clusters via wet synthesis.

19.
J Phys Chem A ; 125(48): 10392-10400, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34846886

RESUMEN

Cyclotrimerization of acetylene to benzene has attracted significant interest, but the role of geometric and electronic effects on catalytic chemistry remains unclear. To fully elucidate the mechanism of catalytic acetylene-to-benzene conversion, we have performed a gas-phase reaction study of the Fen+, Con+, and Nin+ (n = 1-16) clusters with acetylene utilizing a customized mass spectrometer. It is found that their reactions with acetylene are initiated by C2H2 molecular adsorption and allow for dominant dehydrogenation with the relatively low partial pressure of the acetylene gas. However, at high acetylene concentrations, the cyclotrimerization in Mn+ + 3C2H2 (M = Fe, Co, Ni) becomes the dominant reaction channel. We demonstrate theoretically the favorable thermodynamics and reaction dynamics leading to the formation of the M+(C6H6) products. The results are discussed in terms of a cluster-catalyzed multimolecule synergistic effect and the cation-π interactions.

20.
J Phys Chem A ; 125(10): 2130-2138, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33689326

RESUMEN

We report a joint experimental and theoretical study on the reactions of cobalt clusters (Con±/0) with nitrogen using the customized reflection time-of-flight mass spectrometer combined with a 177.3 nm deep-ultraviolet laser. Comparing to the behaviors of neutral Con (n = 2-30) and anionic Con- clusters (n = 7-53) which are relatively inert in reacting with nitrogen in the fast-flow tube, Con+ clusters readily react with nitrogen resulting in adducts of one or multiple N2 except Co6+ which stands firm in the reaction with nitrogen. Detailed quantum chemistry calculations, including the energetics, electron occupancy, and orbital analysis, well-explained the reasonable reactivity of Con+ clusters with nitrogen and unveiled the open-shell superatomic stability of Co6+ within a highly symmetric (D3d) structure. The D3d Co6+ bears an electron configuration of a half-filled superatomic 1P orbital (i.e., 1S21P3||1D0), a large α-highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap, symmetric multicenter bonds, and reasonable electron delocalization pertaining to metallic aromaticity. Topology analysis by atom-in-molecule illustrates the interactions between Con+ and N2 corresponding to covalent bonds, but the Co-N interactions in cationic Co2+N2 and Co6+N2 clusters are apparently weaker than those in the other systems. In addition, we identify a superatomic complex Co5N6+ which exhibits similar frontier orbitals as the naked Co5+ cluster, but the alpha HOMO-LUMO gap is nearly double-magnified, which is consistent with the high-abundance peak of Co5N6+ in the experimental observation. The enhanced stability of such a ligand-coordinated superatomic complex Co5N6+, along with the superatom Co6+ with aromaticity, sheds light on special and general superatoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA