Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Pflugers Arch ; 473(12): 1899-1910, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34564739

RESUMEN

In chronic kidney disease (CKD), hyperphosphatemia promotes medial vascular calcification, a process augmented by osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). VSMC function is regulated by sympathetic innervation, and these cells express α- and ß-adrenergic receptors. The present study explored the effects of ß2-adrenergic stimulation by isoproterenol on VSMC calcification. Experiments were performed in primary human aortic VSMCs treated with isoproterenol during control or high phosphate conditions. As a result, isoproterenol dose dependently up-regulated the expression of osteogenic markers core-binding factor α-1 (CBFA1) and tissue-nonspecific alkaline phosphatase (ALPL) in VSMCs. Furthermore, prolonged isoproterenol exposure augmented phosphate-induced calcification of VSMCs. Isoproterenol increased the activation of PKA and CREB, while knockdown of the PKA catalytic subunit α (PRKACA) or of CREB1 genes was able to suppress the pro-calcific effects of isoproterenol in VSMCs. ß2-adrenergic receptor silencing or inhibition with the selective antagonist ICI 118,551 blocked isoproterenol-induced osteogenic signalling in VSMCs. The present observations imply a pro-calcific effect of ß2-adrenergic overstimulation in VSMCs, which is mediated, at least partly, by PKA/CREB signalling. These observations may support a link between sympathetic overactivity in CKD and vascular calcification.


Asunto(s)
Adrenérgicos/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal/fisiología , Calcificación Vascular/metabolismo , Aorta/metabolismo , Calcio/metabolismo , Transdiferenciación Celular/fisiología , Células Cultivadas , Humanos , Osteogénesis/fisiología , Fosfatos/metabolismo , Insuficiencia Renal Crónica/metabolismo
2.
Pflugers Arch ; 471(6): 889-899, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30706178

RESUMEN

The serum- and glucocorticoid-inducible kinase 1 (SGK1) is a key regulator of osteo-/chondrogenic transdifferentiation and subsequent calcification of vascular smooth muscle cells (VSMCs). The phenotypical transdifferentiation of VSMCs is associated with increased interleukin-18 (IL-18) levels and generalized inflammation. Therefore, the present study investigated the possible involvement of SGK1 in IL-18-induced vascular calcification. Experiments were performed in primary human aortic smooth muscle cells (HAoSMCs) treated with recombinant human IL-18 protein in control or high phosphate conditions and following SGK1 knockdown by siRNA or pharmacological inhibition of SGK1, PI3K, and PDK1. As a result, IL-18 treatment increased SGK1 mRNA and protein expression in HAoSMCs. IL-18 upregulated SGK1 mRNA expression in a dose-dependent manner. This effect was paralleled by upregulation of the mRNA expression of MSX2 and CBFA1, osteogenic transcription factors, and of tissue-nonspecific alkaline phosphatase (ALPL), an osteogenic enzyme, as markers of increased osteo-/chondrogenic transdifferentiation. Phosphate treatment increased SGK1 and osteogenic markers mRNA expression as well as ALPL activity and induced calcification of HAoSMCs, all effects significantly augmented by additional treatment with IL-18. Conversely, silencing of SGK1 or cotreatment with the SGK1 inhibitor EMD638683 blunted the effects of IL-18 on osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. The procalcific effects of IL-18 were similarly suppressed in the presence of PI3K or PDK1 inhibitors. In conclusion, SGK1 expression is upregulated by IL-18 in VSMCs and SGK1 participates in the intracellular signaling of IL-18-induced osteo-/chondrogenic transdifferentiation of VSMCs. Thus, SGK1 may serve as therapeutic target to limit the progression of medial vascular calcification during vascular inflammation.


Asunto(s)
Transdiferenciación Celular , Proteínas Inmediatas-Precoces/metabolismo , Interleucina-18/fisiología , Miocitos del Músculo Liso/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Células Cultivadas , Humanos , Músculo Liso Vascular/citología
3.
J Am Soc Nephrol ; 29(6): 1636-1648, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29654213

RESUMEN

Background The high cardiovascular morbidity and mortality of patients with CKD may result in large part from medial vascular calcification, a process promoted by hyperphosphatemia and involving osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Reduced serum zinc levels have frequently been observed in patients with CKD, but the functional relevance of this remains unclear.Methods We performed experiments in primary human aortic VSMCs; klotho-hypomorphic (kl/kl), subtotal nephrectomy, and cholecalciferol-overload mouse calcification models; and serum samples from patients with CKD.Results In cultured VSMCs, treatment with zinc sulfate (ZnSO4) blunted phosphate-induced calcification, osteo-/chondrogenic signaling, and NF-κB activation. ZnSO4 increased the abundance of zinc-finger protein TNF-α-induced protein 3 (TNFAIP3, also known as A20), a suppressor of the NF-κB pathway, by zinc-sensing receptor ZnR/GPR39-dependent upregulation of TNFAIP3 gene expression. Silencing of TNFAIP3 in VSMCs blunted the anticalcific effects of ZnSO4 under high phosphate conditions. kl/kl mice showed reduced plasma zinc levels, and ZnSO4 supplementation strongly blunted vascular calcification and aortic osteoinduction and upregulated aortic Tnfaip3 expression. ZnSO4 ameliorated vascular calcification in mice with chronic renal failure and mice with cholecalciferol overload. In patients with CKD, serum zinc concentrations inversely correlated with serum calcification propensity. Finally, ZnSO4 ameliorated the osteoinductive effects of uremic serum in VSMCs.Conclusions Zinc supplementation ameliorates phosphate-induced osteo-/chondrogenic transdifferentiation of VSMCs and vascular calcification through an active cellular mechanism resulting from GPR39-dependent induction of TNFAIP3 and subsequent suppression of the NF-κB pathway. Zinc supplementation may be a simple treatment to reduce the burden of vascular calcification in CKD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fallo Renal Crónico/sangre , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Calcificación Vascular/prevención & control , Sulfato de Zinc/farmacología , Animales , Aorta , Transdiferenciación Celular , Células Cultivadas , Suplementos Dietéticos , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Silenciador del Gen , Glucuronidasa/genética , Humanos , Hidroxietilrutósido , Hiperfosfatemia/sangre , Hiperfosfatemia/complicaciones , Proteínas Klotho , Ratones , FN-kappa B/antagonistas & inhibidores , Nefrectomía , Nefrocalcinosis/prevención & control , Fosfatos , Transducción de Señal , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Calcificación Vascular/sangre , Calcificación Vascular/etiología , Zinc/sangre
4.
Cell Physiol Biochem ; 46(4): 1305-1316, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29689558

RESUMEN

BACKGROUND/AIMS: Fibulin-3, an extracellular matrix glycoprotein, inhibits vascular oxidative stress and remodeling in hypertension. Oxidative stress is prevalent in chronic kidney disease (CKD) patients and is an important mediator of osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells (VSMCs) during hyperphosphatemia. Therefore, the present study explored the effects of Fibulin-3 on phosphate-induced vascular calcification. METHODS: Experiments were performed in primary human aortic smooth muscle cells (HAoSMCs) treated with control or with phosphate without or with additional treatment with recombinant human Fibulin-3 protein or with hydrogen peroxide as an exogenous source of oxidative stress. RESULTS: Treatment with calcification medium significantly increased calcium deposition in HAoSMCs, an effect significantly blunted by additional treatment with Fibulin-3. Moreover, phosphate-induced alkaline phosphatase activity and mRNA expression of osteogenic and chondrogenic markers MSX2, CBFA1, SOX9 and ALPL were all significantly reduced by addition of Fibulin-3. These effects were paralleled by similar regulation of oxidative stress in HAoSMCs. Phosphate treatment significantly up-regulated mRNA expression of the oxidative stress markers NOX4 and CYBA, down-regulated total antioxidant capacity and increased the expression of downstream effectors of oxidative stress PAI-1, MMP2 and MMP9 as well as BAX/BLC2 ratio in HAoSMCs, all effects blocked by additional treatment with Fibulin-3. Furthermore, the protective effects of Fibulin-3 on phosphate-induced osteogenic and chondrogenic markers expression in HAoSMCs were reversed by additional treatment with hydrogen peroxide. CONCLUSIONS: Fibulin-3 attenuates phosphate-induced osteo-/ chondrogenic transdifferentiation and calcification of VSMCs, effects involving inhibition of oxidative stress. Up-regulation or supplementation of Fibulin-3 may be beneficial in reducing the progression of vascular calcification during hyperphosphatemic conditions such as CKD.


Asunto(s)
Calcificación Fisiológica/efectos de los fármacos , Proteínas de la Matriz Extracelular/farmacología , Glicerofosfatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Línea Celular , Transdiferenciación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Osteogénesis/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo
5.
J Virol ; 90(6): 2794-805, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26719254

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) is a major cause of chronic liver disease and is highly dependent on cellular proteins for virus propagation. To identify the cellular factors involved in HCV propagation, we recently performed protein microarray assays using the HCV nonstructural 5A (NS5A) protein as a probe. Of 90 cellular protein candidates, we selected the soluble resistance-related calcium-binding protein (sorcin) for further characterization. Sorcin is a calcium-binding protein and is highly expressed in certain cancer cells. We verified that NS5A interacted with sorcin through domain I of NS5A, and phosphorylation of the threonine residue 155 of sorcin played a crucial role in protein interaction. Small interfering RNA (siRNA)-mediated knockdown of sorcin impaired HCV propagation. Silencing of sorcin expression resulted in a decrease of HCV assembly without affecting HCV RNA and protein levels. We further demonstrated that polo-like kinase 1 (PLK1)-mediated phosphorylation of sorcin was increased by NS5A. We showed that both phosphorylation and calcium-binding activity of sorcin were required for HCV propagation. These data indicate that HCV modulates sorcin activity via NS5A protein for its own propagation. IMPORTANCE: Sorcin is a calcium-binding protein and regulates intracellular calcium homeostasis. HCV NS5A interacts with sorcin, and phosphorylation of sorcin is required for protein interaction. Gene silencing of sorcin impaired HCV propagation at the assembly step of the HCV life cycle. Sorcin is phosphorylated by PLK1 via protein interaction. We showed that sorcin interacted with both NS5A and PLK1, and PLK1-mediated phosphorylation of sorcin was increased by NS5A. Moreover, calcium-binding activity of sorcin played a crucial role in HCV propagation. These data provide evidence that HCV regulates host calcium metabolism for virus propagation, and thus manipulation of sorcin activity may represent a novel therapeutic target for HCV.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Regulación de la Expresión Génica , Hepacivirus/fisiología , Interacciones Huésped-Patógeno , Proteínas no Estructurales Virales/metabolismo , Ensamble de Virus , Hepacivirus/crecimiento & desarrollo , Unión Proteica , Mapeo de Interacción de Proteínas
6.
Biomolecules ; 12(8)2022 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-36009051

RESUMEN

Medial vascular calcification is common in chronic kidney disease (CKD) and is closely linked to hyperphosphatemia. Vascular smooth muscle cells (VSMCs) can take up pro-calcific properties and actively augment vascular calcification. Various pro-inflammatory mediators are able to promote VSMC calcification. In this study, we investigated the effects and mechanisms of periostin, a matricellular signaling protein, in calcifying human VSMCs and human serum samples. As a result, periostin induced the mRNA expression of pro-calcific markers in VSMCs. Furthermore, periostin augmented the effects of ß-glycerophosphate on the expression of pro-calcific markers and aggravated the calcification of VSMCs. A periostin treatment was associated with an increased ß-catenin abundance as well as the expression of target genes. The pro-calcific effects of periostin were ameliorated by WNT/ß-catenin pathway inhibitors. Moreover, a co-treatment with an integrin αvß3-blocking antibody blunted the pro-calcific effects of periostin. The silencing of periostin reduced the effects of ß-glycerophosphate on the expression of pro-calcific markers and the calcification of VSMCs. Elevated serum periostin levels were observed in hemodialysis patients compared with healthy controls. These observations identified periostin as an augmentative factor in VSMC calcification. The pro-calcific effects of periostin involve integrin αvß3 and the activation of the WNT/ß-catenin pathway. Thus, the inhibition of periostin may be beneficial to reduce the burden of vascular calcification in CKD patients.


Asunto(s)
Insuficiencia Renal Crónica , Calcificación Vascular , Células Cultivadas , Humanos , Integrina alfaVbeta3/metabolismo , Músculo Liso Vascular/metabolismo , Insuficiencia Renal Crónica/metabolismo , Calcificación Vascular/genética , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
7.
Cardiovasc Res ; 117(3): 930-941, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-32243494

RESUMEN

AIMS: Uromodulin is produced exclusively in the kidney and secreted into both urine and blood. Serum levels of uromodulin are correlated with kidney function and reduced in chronic kidney disease (CKD) patients, but physiological functions of serum uromodulin are still elusive. This study investigated the role of uromodulin in medial vascular calcification, a key factor associated with cardiovascular events and mortality in CKD patients. METHODS AND RESULTS: Experiments were performed in primary human (HAoSMCs) and mouse (MOVAS) aortic smooth muscle cells, cholecalciferol overload and subtotal nephrectomy mouse models and serum from CKD patients. In three independent cohorts of CKD patients, serum uromodulin concentrations were inversely correlated with serum calcification propensity. Uromodulin supplementation reduced phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. In human serum, pro-inflammatory cytokines tumour necrosis factor α (TNFα) and interleukin-1ß (IL-1ß) co-immunoprecipitated with uromodulin. Uromodulin inhibited TNFα and IL-1ß-induced osteo-/chondrogenic signalling and activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated ß cells (NF-kB) as well as phosphate-induced NF-kB-dependent transcriptional activity in HAoSMCs. In vivo, adeno-associated virus (AAV)-mediated overexpression of uromodulin ameliorated vascular calcification in mice with cholecalciferol overload. Conversely, cholecalciferol overload-induced vascular calcification was aggravated in uromodulin-deficient mice. In contrast, uromodulin overexpression failed to reduce vascular calcification during renal failure in mice. Carbamylated uromodulin was detected in serum of CKD patients and uromodulin carbamylation inhibited its anti-calcific properties in vitro. CONCLUSIONS: Uromodulin counteracts vascular osteo-/chondrogenic transdifferentiation and calcification, at least in part, through interference with cytokine-dependent pro-calcific signalling. In CKD, reduction and carbamylation of uromodulin may contribute to vascular pathology.


Asunto(s)
Transdiferenciación Celular , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Insuficiencia Renal Crónica/sangre , Uromodulina/sangre , Calcificación Vascular/prevención & control , Adulto , Anciano , Animales , Aorta/inmunología , Aorta/metabolismo , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Condrogénesis , Citocinas/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Persona de Mediana Edad , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/inmunología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/inmunología , Osteogénesis , Fenotipo , Carbamilación de Proteína , Insuficiencia Renal Crónica/inmunología , Transducción de Señal , Uromodulina/genética , Uromodulina/farmacología , Calcificación Vascular/sangre , Calcificación Vascular/inmunología , Adulto Joven
8.
Cell Signal ; 64: 109414, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31505229

RESUMEN

Elevated transforming growth factor ß1 (TGFß1) levels are frequently observed in chronic kidney disease (CKD) patients. TGFß1 contributes to development of medial vascular calcification during hyperphosphatemia, a pathological process promoted by osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Vasorin is a transmembrane glycoprotein highly expressed in VSMCs, which is able to bind TGFß to inhibit TGFß signaling. Thus, the present study explored the effects of vasorin on osteo-/chondrogenic transdifferentiation and calcification of VSMCs. Primary human aortic smooth muscle cells (HAoSMCs) were treated with recombinant human TGFß1 or ß-glycerophosphate without or with recombinant human vasorin or vasorin gene silencing by siRNA. As a result, TGFß1 down-regulated vasorin mRNA expression in HAoSMCs. Vasorin supplementation inhibited TGFß1-induced pathway activation, SMAD2 phosphorylation and downstream target genes expression in HAoSMCs. Furthermore, treatment with exogenous vasorin blunted, while vasorin knockdown augmented TGFß1-induced osteo-/chondrogenic transdifferentiation of HAoSMCs. In addition, phosphate down-regulated vasorin mRNA expression in HAoSMCs. Phosphate-induced TGFß1 expression was not affected by addition of exogenous vasorin. Nonetheless, the phosphate-induced TGFß1 signaling, osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs were all blunted by vasorin. Conversely, silencing of vasorin aggravated osteoinduction in HAoSMCs during high phosphate conditions. Aortic vasorin expression was reduced in the hyperphosphatemic klotho-hypomorphic mouse model of CKD-related vascular calcification. In conclusion, vasorin, which suppresses TGFß1 signaling and protects against osteo-/chondrogenic transdifferentiation and calcification of VSMCs, is reduced by pro-calcifying conditions. Thus, vasorin is a novel key regulator of VSMC calcification and may represent a potential therapeutic target for vascular calcification during CKD.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Insuficiencia Renal Crónica/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Calcificación Vascular/metabolismo , Animales , Línea Celular , Transdiferenciación Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología
9.
Aging (Albany NY) ; 11(15): 5445-5462, 2019 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-31377747

RESUMEN

Medial vascular calcification occurs during the aging process and is strongly accelerated by chronic kidney disease (CKD). Elevated C-reactive protein (CRP) levels are associated with vascular calcification, cardiovascular events and mortality in CKD patients. CRP is an important promoter of vascular inflammation. Inflammatory processes are critically involved in initiation and progression of vascular calcification. Thus, the present study explored a possible impact of CRP on vascular calcification. We found that CRP promoted osteo-/chondrogenic transdifferentiation and aggravated phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of primary human aortic smooth muscle cells (HAoSMCs). These effects were paralleled by increased cellular oxidative stress and corresponding pro-calcific downstream-signaling. Antioxidants or p38 MAPK inhibition suppressed CRP-induced osteo-/chondrogenic signaling and mineralization. Furthermore, silencing of Fc fragment of IgG receptor IIa (FCGR2A) blunted the pro-calcific effects of CRP. Vascular CRP expression was increased in the klotho-hypomorphic mouse model of aging as well as in HAoSMCs during calcifying conditions. In conclusion, CRP augments osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells through mechanisms involving FCGR2A-dependent induction of oxidative stress. Thus, systemic inflammation may actively contribute to the progression of vascular calcification.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/patología , Proteína C-Reactiva/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Animales , Transdiferenciación Celular/fisiología , Células Cultivadas , Condrogénesis/fisiología , Modelos Animales de Enfermedad , Glucuronidasa/genética , Glucuronidasa/metabolismo , Humanos , Proteínas Klotho , Ratones , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Osteogénesis/fisiología , Estrés Oxidativo , ARN Interferente Pequeño/genética , Receptores de IgG/antagonistas & inhibidores , Receptores de IgG/genética , Receptores de IgG/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Transducción de Señal , Calcificación Vascular/etiología
10.
Sci Rep ; 9(1): 7288, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086268

RESUMEN

Hepatitis C virus (HCV) is the major causative agent of chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma. The recent development of highly effective direct-acting antivirals (DAAs) has revolutionized the treatment of HCV patients. However, these DAAs are exorbitantly expensive for the majority of HCV patients worldwide. Moreover, these drugs still show genotypic difference in cure rate and have some resistant-associated variants. Tylophorine, a natural compound derived from Tylophora indica plants, is known to have anti-inflammatory and anti-cancerous growth activities. In the present study, we showed that two tylophorine intermediates, 5-Oxo-1-[(2,3,6,7-tetramethoxy-9-phenanthrenyl) methyl]-L-proline (O859585) and 2,3,6,7-tetramethoxy-9-phenanthrenecarboxylic acid (T298875), displayed anti-HCV activity with an EC50 of 38.25 µM for T298875 and 29.11~35.3 µM for O859585 in various HCV genotypes. We demonstrated that O859585 efficiently blocked HCV attachment by neutralizing free viral particles without affecting other stages of the HCV life cycle and interferon stimulation. O859585 interrupted binding between HCV E2 and CD81. Of note, co-treatment of O859585 with either interferon alpha (IFNα) or sofosbuvir exerted either an additive or synergistic antiviral activity in HCV-infected cells with no measurable effect on cell viability. Most importantly, O859585 in combination with IFNα and sofosbuvir exhibited synergistic effects on anti-HCV activity in primary human hepatocytes. Collectively, these data suggest that O859585 may be a novel antiviral agent for HCV therapy.


Asunto(s)
Alcaloides/farmacología , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepatitis C Crónica/tratamiento farmacológico , Indolizinas/farmacología , Fenantrenos/farmacología , Prolina/farmacología , Internalización del Virus/efectos de los fármacos , Alcaloides/química , Alcaloides/uso terapéutico , Antivirales/química , Antivirales/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Células HEK293 , Hepacivirus/metabolismo , Hepatitis C Crónica/virología , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Indolizinas/química , Indolizinas/uso terapéutico , Interferón-alfa/farmacología , Interferón-alfa/uso terapéutico , Fenantrenos/química , Fenantrenos/uso terapéutico , Cultivo Primario de Células , Prolina/uso terapéutico , Sofosbuvir/farmacología , Sofosbuvir/uso terapéutico , Tetraspanina 28/metabolismo , Tylophora/química , Proteínas del Envoltorio Viral/metabolismo
11.
Sci Rep ; 8(1): 15486, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30341327

RESUMEN

Hepatitis C virus (HCV) exploits an extensive network of host proteins to maintain chronic infection. Using RNA-Seq technology, we identified 30 host genes that were differentially expressed in cell culture grown HCV (HCVcc)-infected cells. Of these candidate genes, we selected solute carrier family 3 member 2 (SLC3A2) for further investigation. SLC3A2, also known as CD98hc, is a member of the solute carrier family and encodes a subunit of heterodimeric amino acid transporter. SLC3A2 and LAT1 constitute a heterodimeric transmembrane protein complex that catalyzes amino acid transport. In this study, we showed that HCV upregulated both mRNA and protein expression levels of SLC3A2 and this upregulation occurred through NS3/4A-mediated oxidative stress. HCV also elevated SLC3A2/LAT1 complex level and thus mammalian target of rapamycin complex 1 (mTORC1) signaling was activated. We further showed that L-leucine transport level was significantly increased in Jc1-infected cells as compared with mock-infected cells. Using RNA interference technology, we demonstrated that SLC3A2 was specifically required for the entry step but not for other stages of the HCV life cycle. These data suggest that SLC3A2 plays an important role in regulating HCV entry. Collectively, HCV exploits SLC3A2 for viral propagation and upregulation of SLC3A2 may contribute to HCV-mediated pathogenesis.


Asunto(s)
Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Hepacivirus/fisiología , Hepatitis C/virología , Complejos Multiproteicos/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Leucina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Estrés Oxidativo , Transporte de Proteínas , ARN Interferente Pequeño/genética , Transducción de Señal , Proteínas no Estructurales Virales/metabolismo , Internalización del Virus , Replicación Viral
12.
Sci Rep ; 7(1): 6445, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28743875

RESUMEN

The life cycle of hepatitis C virus (HCV) is highly dependent on host proteins for virus propagation. By transcriptome sequencing analysis, we identified host genes that were highly differentially expressed in HCV-infected cells. Of these candidates, we selected Death receptor 6 (DR6) for further characterization. DR6 is an orphan member of the tumor necrosis factor receptor superfamily. In the present study, we demonstrated that both mRNA and protein levels of DR6 were increased in the context of HCV replication. We further showed that promoter activity of DR6 was increased by HCV infection. By employing promoter-linked reporter assay, we showed that HCV upregulated DR6 via ROS-mediated NF-κB pathway. Both mRNA and protein levels of DR6 were increased by NS4B or NS5A. However, NS5A but not NS4B specifically interacted with DR6. We showed that HCV modulated JNK, p38 MAPK, STAT3, and Akt signaling pathways in a DR6-dependent manner. Interestingly, Akt signaling cascade was regulated by protein interplay between DR6 and NS5A. Silencing of DR6 expression resulted in decrease of infectious HCV production without affecting viral entry, replication, and translation. Together, these data indicate that HCV modulates DR6 signaling pathway for viral propagation and may contribute to HCV-mediated pathogenesis.


Asunto(s)
Hepacivirus/patogenicidad , Hepatitis C/virología , Interacciones Huésped-Patógeno/fisiología , Receptores del Factor de Necrosis Tumoral/metabolismo , Línea Celular , Hepacivirus/fisiología , Hepatitis C/metabolismo , Humanos , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores del Factor de Necrosis Tumoral/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Regulación hacia Arriba , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Internalización del Virus , Replicación Viral , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Front Microbiol ; 8: 1249, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28729862

RESUMEN

Hepatitis C virus (HCV) is a leading cause of chronic liver disease affecting over 170 million people worldwide. Chronic infection with HCV progresses to liver fibrosis, cirrhosis, and hepatocellular carcinoma. HCV exploits host cellular factors for viral propagation. To investigate the cellular factors required for HCV propagation, we screened a siRNA library targeting human cell cycle genes using cell culture grown HCV-infected cells. In the present study, we selected and characterized a gene encoding Rad51. Rad51, a member of a conserved recombinase family, is an essential factor for homologous recombination and repair of double-strand DNA breaks. We demonstrated that siRNA-mediated knockdown of Rad51 significantly inhibited HCV propagation without affecting HCV RNA replication. Silencing of Rad51 impaired secretion of infectious HCV particles and thus intracellular viruses were accumulated. We showed that HCV NS3 specifically interacted with Rad51 and accumulated Rad51 in the cytosol. Furthermore, Rad51 was coprecipitated with NS3 and HCV RNA. By employing membrane flotation and protease protection assays, we also demonstrated that Rad51 was co-fractionated with HCV NS3 on the lipid raft. These data indicate that Rad51 may be a component of the HCV RNA replication complex. Collectively, these data suggest that HCV may exploit cellular Rad51 to promote viral propagation and thus Rad51 may be a potential therapeutic target for HCV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA