Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 143(7): 1110-20, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21183074

RESUMEN

Most bacteria surround themselves with a peptidoglycan (PG) exoskeleton synthesized by polysaccharide polymerases called penicillin-binding proteins (PBPs). Because they are the targets of penicillin and related antibiotics, the structure and biochemical functions of the PBPs have been extensively studied. Despite this, we still know surprisingly little about how these enzymes build the PG layer in vivo. Here, we identify the Escherichia coli outer-membrane lipoproteins LpoA and LpoB as essential PBP cofactors. We show that LpoA and LpoB form specific trans-envelope complexes with their cognate PBP and are critical for PBP function in vivo. We further show that LpoB promotes PG synthesis by its partner PBP in vitro and that it likely does so by stimulating glycan chain polymerization. Overall, our results indicate that PBP accessory proteins play a central role in PG biogenesis, and like the PBPs they work with, these factors are attractive targets for antibiotic development.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Pared Celular/enzimología , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/biosíntesis , Pared Celular/metabolismo , Escherichia coli/citología , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo
2.
J Am Chem Soc ; 145(29): 15632-15638, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37283497

RESUMEN

Bacterial glycomes are rich in prokaryote-specific or "rare" sugars that are absent in mammals. Like common sugars found across organisms, rare sugars are typically activated as nucleoside diphosphate sugars (NDP-sugars) by nucleotidyltransferases. In bacteria, the nucleotidyltransferase RmlA initiates the production of several rare NDP-sugars, which in turn regulate downstream glycan assembly through feedback inhibition of RmlA via binding to an allosteric site. In vitro, RmlA activates a range of common sugar-1-phosphates to produce NDP-sugars for biochemical and synthetic applications. However, our ability to probe bacterial glycan biosynthesis is hindered by limited chemoenzymatic access to rare NDP-sugars. We postulate that natural feedback mechanisms impact nucleotidyltransferase utility. Here, we use synthetic rare NDP-sugars to identify structural features required for regulation of RmlA from diverse bacterial species. We find that mutation of RmlA to eliminate allosteric binding of an abundant rare NDP-sugar facilitates the activation of noncanonical rare sugar-1-phosphate substrates, as products no longer affect turnover. In addition to promoting an understanding of nucleotidyltransferase regulation by metabolites, this work provides new routes to access rare sugar substrates for the study of important bacteria-specific glycan pathways.


Asunto(s)
Nucleótidos , Nucleotidiltransferasas , Animales , Nucleotidiltransferasas/química , Azúcares , Retroalimentación , Bacterias/metabolismo , Azúcares de Nucleósido Difosfato , Mamíferos/metabolismo
3.
J Am Chem Soc ; 145(29): 15639-15646, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37437030

RESUMEN

Bacteria synthesize hundreds of bacteria-specific or "rare" sugars that are absent in mammalian cells and enriched in 6-deoxy monosaccharides such as l-rhamnose (l-Rha). Across bacteria, l-Rha is incorporated into glycans by rhamnosyltransferases (RTs) that couple nucleotide sugar substrates (donors) to target biomolecules (acceptors). Since l-Rha is required for the biosynthesis of bacterial glycans involved in survival or host infection, RTs represent potential antibiotic or antivirulence targets. However, purified RTs and their unique bacterial sugar substrates have been difficult to obtain. Here, we use synthetic nucleotide rare sugar and glycolipid analogs to examine substrate recognition by three RTs that produce cell envelope components in diverse species, including a known pathogen. We find that bacterial RTs prefer pyrimidine nucleotide-linked 6-deoxysugars, not those containing a C6-hydroxyl, as donors. While glycolipid acceptors must contain a lipid, isoprenoid chain length, and stereochemistry can vary. Based on these observations, we demonstrate that a 6-deoxysugar transition state analog inhibits an RT in vitro and reduces levels of RT-dependent O-antigen polysaccharides in Gram-negative cells. As O-antigens are virulence factors, bacteria-specific sugar transferase inhibition represents a novel strategy to prevent bacterial infections.


Asunto(s)
Bacterias , Antígenos O , Bacterias/química , Glucolípidos , Azúcares , Nucleótidos
4.
Chembiochem ; 24(20): e202300261, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37556312

RESUMEN

Functional interactions between the molecular chaperone DnaK and cofactor J-proteins (DnaJs), as well as their homologs, are crucial to the maintenance of proteostasis across cell types. In the bacterial pathogen Mycobacterium tuberculosis, DnaK-DnaJ interactions are essential for cell growth and represent potential targets for antibiotic or adjuvant development. While the N-terminal J-domains of J-proteins are known to form important contacts with DnaK, C-terminal domains have varied roles. Here, we have studied the effect of adding C-terminal tags to N-terminal J-domain truncations of mycobacterial DnaJ1 and DnaJ2 to promote additional interactions with DnaK. We found that His6 tags uniquely promote binding to additional sites in the substrate binding domain at the C-terminus of DnaK. Other C-terminal tags attached to J-domains, even peptides known to interact with DnaK, do not produce the same effects. Expression of C-terminally modified DnaJ1 or DnaJ2 J-domains in mycobacterial cells suppresses chaperone activity following proteotoxic stress, which is exaggerated in the presence of a small-molecule DnaK inhibitor. Hence, this work uncovers genetically encodable J-protein variants that may be used to study chaperone-cofactor interactions in other organisms.


Asunto(s)
Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico , Proteínas HSP70 de Choque Térmico/química , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Escherichia coli/química , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas Bacterianas/metabolismo
5.
Mol Microbiol ; 115(2): 272-289, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32996193

RESUMEN

Bacterial chaperones ClpB and DnaK, homologs of the respective eukaryotic heat shock proteins Hsp104 and Hsp70, are essential in the reactivation of toxic protein aggregates that occur during translation or periods of stress. In the pathogen Mycobacterium tuberculosis (Mtb), the protective effect of chaperones extends to survival in the presence of host stresses, such as protein-damaging oxidants. However, we lack a full understanding of the interplay of Hsps and other stress response genes in mycobacteria. Here, we employ genome-wide transposon mutagenesis to identify the genes that support clpB function in Mtb. In addition to validating the role of ClpB in Mtb's response to oxidants, we show that HtpG, a homolog of Hsp90, plays a distinct role from ClpB in the proteotoxic stress response. While loss of neither clpB nor htpG is lethal to the cell, loss of both through genetic depletion or small molecule inhibition impairs recovery after exposure to host-like stresses, especially reactive nitrogen species. Moreover, defects in cells lacking clpB can be complemented by overexpression of other chaperones, demonstrating that Mtb's stress response network depends upon finely tuned chaperone expression levels. These results suggest that inhibition of multiple chaperones could work in concert with host immunity to disable Mtb.


Asunto(s)
Endopeptidasa Clp/metabolismo , Mycobacterium tuberculosis/metabolismo , Estrés Fisiológico/fisiología , Proteínas Bacterianas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Mycobacterium tuberculosis/genética
6.
Proc Natl Acad Sci U S A ; 115(41): E9560-E9569, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30257943

RESUMEN

The protein disaggregase ClpB hexamer is conserved across evolution and has two AAA+-type nucleotide-binding domains, NBD1 and NBD2, in each protomer. In M. tuberculosis (Mtb), ClpB facilitates asymmetric distribution of protein aggregates during cell division to help the pathogen survive and persist within the host, but a mechanistic understanding has been lacking. Here we report cryo-EM structures at 3.8- to 3.9-Šresolution of Mtb ClpB bound to a model substrate, casein, in the presence of the weakly hydrolyzable ATP mimic adenosine 5'-[γ-thio]triphosphate. Mtb ClpB existed in solution in two closed-ring conformations, conformers 1 and 2. In both conformers, the 12 pore-loops on the 12 NTDs of the six protomers (P1-P6) were arranged similarly to a staircase around the bound peptide. Conformer 1 is a low-affinity state in which three of the 12 pore-loops (the protomer P1 NBD1 and NBD2 loops and the protomer P2 NBD1 loop) are not engaged with peptide. Conformer 2 is a high-affinity state because only one pore-loop (the protomer P2 NBD1 loop) is not engaged with the peptide. The resolution of the two conformations, along with their bound substrate peptides and nucleotides, enabled us to propose a nucleotide-driven peptide translocation mechanism of a bacterial ClpB that is largely consistent with several recent unfoldase structures, in particular with the eukaryotic Hsp104. However, whereas Hsp104's two NBDs move in opposing directions during one step of peptide translocation, in Mtb ClpB the two NBDs move only in the direction of translocation.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Bacterianas/química , Endopeptidasa Clp/química , Mycobacterium tuberculosis/enzimología , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Hidrólisis , Dominios Proteicos , Transporte de Proteínas
7.
Proc Natl Acad Sci U S A ; 113(49): E7947-E7956, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27872278

RESUMEN

During host infection, Mycobacterium tuberculosis (Mtb) encounters several types of stress that impair protein integrity, including reactive oxygen and nitrogen species and chemotherapy. The resulting protein aggregates can be resolved or degraded by molecular machinery conserved from bacteria to eukaryotes. Eukaryotic Hsp104/Hsp70 and their bacterial homologs ClpB/DnaK are ATP-powered chaperones that restore toxic protein aggregates to a native folded state. DnaK is essential in Mycobacterium smegmatis, and ClpB is involved in asymmetrically distributing damaged proteins during cell division as a mechanism of survival in Mtb, commending both proteins as potential drug targets. However, their molecular partners in protein reactivation have not been characterized in mycobacteria. Here, we reconstituted the activities of the Mtb ClpB/DnaK bichaperone system with the cofactors DnaJ1, DnaJ2, and GrpE and the small heat shock protein Hsp20. We found that DnaJ1 and DnaJ2 activate the ATPase activity of DnaK differently. A point mutation in the highly conserved HPD motif of the DnaJ proteins abrogates their ability to activate DnaK, although the DnaJ2 mutant still binds to DnaK. The purified Mtb ClpB/DnaK system reactivated a heat-denatured model substrate, but the DnaJ HPD mutants inhibited the reaction. Finally, either DnaJ1 or DnaJ2 is required for mycobacterial viability, as is the DnaK-activating activity of a DnaJ protein. These studies lay the groundwork for strategies to target essential chaperone-protein interactions in Mtb, the leading cause of death from a bacterial infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteostasis , Adenosina Trifosfatasas/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/metabolismo , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(17): 4788-93, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27071112

RESUMEN

To fortify their cytoplasmic membrane and protect it from osmotic rupture, most bacteria surround themselves with a peptidoglycan (PG) exoskeleton synthesized by the penicillin-binding proteins (PBPs). As their name implies, these proteins are the targets of penicillin and related antibiotics. We and others have shown that the PG synthases PBP1b and PBP1a of Escherichia coli require the outer membrane lipoproteins LpoA and LpoB, respectively, for their in vivo function. Although it has been demonstrated that LpoB activates the PG polymerization activity of PBP1b in vitro, the mechanism of activation and its physiological relevance have remained unclear. We therefore selected for variants of PBP1b (PBP1b*) that bypass the LpoB requirement for in vivo function, reasoning that they would shed light on LpoB function and its activation mechanism. Several of these PBP1b variants were isolated and displayed elevated polymerization activity in vitro, indicating that the activation of glycan polymer growth is indeed one of the relevant functions of LpoB in vivo. Moreover, the location of amino acid substitutions causing the bypass phenotype on the PBP1b structure support a model in which polymerization activation proceeds via the induction of a conformational change in PBP1b initiated by LpoB binding to its UB2H domain, followed by its transmission to the glycosyl transferase active site. Finally, phenotypic analysis of strains carrying a PBP1b* variant revealed that the PBP1b-LpoB complex is most likely not providing an important physical link between the inner and outer membranes at the division site, as has been previously proposed.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Pared Celular/química , Proteínas de Escherichia coli/ultraestructura , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/ultraestructura , Sitios de Unión , Pared Celular/metabolismo , Pared Celular/ultraestructura , Coenzimas/química , Coenzimas/ultraestructura , Simulación por Computador , Activación Enzimática , Proteínas de Escherichia coli/química , Modelos Químicos , Modelos Moleculares , Proteínas de Unión a las Penicilinas/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
9.
J Am Chem Soc ; 136(1): 52-5, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24341982

RESUMEN

In Escherichia coli , the bifunctional penicillin-binding proteins (PBPs), PBP1A and PBP1B, play critical roles in the final stage of peptidoglycan (PG) biosynthesis. These synthetic enzymes each possess a PG glycosyltransferase (PGT) domain and a transpeptidase (TP) domain. Recent genetic experiments have shown that PBP1A and PBP1B each require an outer membrane lipoprotein, LpoA and LpoB, respectively, to function properly in vivo. Here, we use complementary assays to show that LpoA and LpoB each increase the PGT and TP activities of their cognate PBPs, albeit by different mechanisms. LpoA directly increases the rate of the PBP1A TP reaction, which also results in enhanced PGT activity; in contrast, LpoB directly affects PGT domain activity, resulting in enhanced TP activity. These studies demonstrate bidirectional coupling of PGT and TP domain function. Additionally, the transpeptidation assay described here can be applied to study other activators or inhibitors of the TP domain of PBPs, which are validated drug targets.


Asunto(s)
Escherichia coli/enzimología , Lipoproteínas/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Coenzimas/metabolismo , Modelos Biológicos , Estructura Molecular , Proteínas de Unión a las Penicilinas/química
10.
J Am Chem Soc ; 136(31): 10874-7, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25036369

RESUMEN

The peptidoglycan precursor, Lipid II, produced in the model Gram-positive bacterium Bacillus subtilis differs from Lipid II found in Gram-negative bacteria such as Escherichia coli by a single amidation on the peptide side chain. How this difference affects the cross-linking activity of penicillin-binding proteins (PBPs) that assemble peptidoglycan in cells has not been investigated because B. subtilis Lipid II was not previously available. Here we report the synthesis of B. subtilis Lipid II and its use by purified B. subtilis PBP1 and E. coli PBP1A. While enzymes from both organisms assembled B. subtilis Lipid II into glycan strands, only the B. subtilis enzyme cross-linked the strands. Furthermore, B. subtilis PBP1 catalyzed the exchange of both D-amino acids and D-amino carboxamides into nascent peptidoglycan, but the E. coli enzyme only exchanged D-amino acids. We exploited these observations to design a fluorescent D-amino carboxamide probe to label B. subtilis PG in vivo and found that this probe labels the cell wall dramatically better than existing reagents.


Asunto(s)
Pared Celular/metabolismo , Colorantes Fluorescentes/metabolismo , Peptidoglicano/metabolismo , Bacillus subtilis/citología , Bacillus subtilis/enzimología , Escherichia coli/enzimología , Proteínas de Unión a las Penicilinas/metabolismo , Peptidil Transferasas/metabolismo , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo
11.
ACS Chem Biol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980755

RESUMEN

The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlighted a critical need to discover more effective antivirals. While therapeutics for SARS-CoV-2 exist, its nonstructural protein 13 (Nsp13) remains a clinically untapped target. Nsp13 is a helicase responsible for unwinding double-stranded RNA during viral replication and is essential for propagation. Like other helicases, Nsp13 has two active sites: a nucleotide binding site that hydrolyzes nucleoside triphosphates (NTPs) and a nucleic acid binding channel that unwinds double-stranded RNA or DNA. Targeting viral helicases with small molecules, as well as the identification of ligand binding pockets, have been ongoing challenges, partly due to the flexible nature of these proteins. Here, we use a virtual screen to identify ligands of Nsp13 from a collection of clinically used drugs. We find that a known ion channel inhibitor, IOWH-032, inhibits the dual ATPase and helicase activities of SARS-CoV-2 Nsp13 at low micromolar concentrations. Kinetic and binding assays, along with computational and mutational analyses, indicate that IOWH-032 interacts with the RNA binding interface, leading to displacement of nucleic acid substrate, but not bound ATP. Evaluation of IOWH-032 with microbial helicases from other superfamilies reveals that it is selective for coronavirus Nsp13. Furthermore, it remains active against mutants representative of observed SARS-CoV-2 variants. Overall, this work provides a new inhibitor for Nsp13 and provides a rationale for a recent observation that IOWH-032 lowers SARS-CoV-2 viral loads in human cells, setting the stage for the discovery of other potent viral helicase modulators.

12.
J Am Chem Soc ; 135(12): 4632-5, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23480167

RESUMEN

The bacterial cell wall precursor, Lipid II, has a highly conserved structure among different organisms except for differences in the amino acid sequence of the peptide side chain. Here, we report an efficient and flexible synthesis of the canonical Lipid II precursor required for the assembly of Gram-negative peptidoglycan (PG). We use a rapid LC/MS assay to analyze PG glycosyltransfer (PGT) and transpeptidase (TP) activities of Escherichia coli penicillin binding proteins PBP1A and PBP1B and show that the native m-DAP residue in the peptide side chain of Lipid II is required in order for TP-catalyzed peptide cross-linking to occur in vitro. Comparison of PG produced from synthetic canonical E. coli Lipid II with PG isolated from E. coli cells demonstrates that we can produce PG in vitro that resembles native structure. This work provides the tools necessary for reconstituting cell wall synthesis, an essential cellular process and major antibiotic target, in a purified system.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Peptidoglicano/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Escherichia coli/química , Peptidoglicano/química , Uridina Difosfato Ácido N-Acetilmurámico/química , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo
13.
Curr Opin Chem Biol ; 76: 102373, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37516006

RESUMEN

DnaK is a chaperone that aids in nascent protein folding and the maintenance of proteome stability across bacteria. Due to the importance of DnaK in cellular proteostasis, there have been efforts to generate molecules that modulate its function. In nature, both protein substrates and antimicrobial peptides interact with DnaK. However, many of these ligands interact with other cellular machinery as well. Recent work has sought to modify these peptide scaffolds to create DnaK-selective and species-specific probes. Others have reported protein domain mimics of interaction partners to disrupt cellular DnaK function and high-throughput screening approaches to discover clinically-relevant peptidomimetics that inhibit DnaK. The described work provides a foundation for the design of new assays and molecules to regulate DnaK activity.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares , Pliegue de Proteína , Péptidos/química , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo
14.
Curr Opin Microbiol ; 75: 102334, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37329679

RESUMEN

Bacterial pathogens are constantly evolving new resistance mechanisms against antibiotics; hence, strategies to potentiate existing antibiotics or combat mechanisms of resistance using adjuvants are always in demand. Recently, inhibitors have been identified that counteract enzymatic modification of the drugs isoniazid and rifampin, which have implications in the study of multi-drug-resistant mycobacteria. A wealth of structural studies on efflux pumps from diverse bacteria has also fueled the design of new small-molecule and peptide-based agents to prevent the active transport of antibiotics. We envision that these findings will inspire microbiologists to apply existing adjuvants to clinically relevant resistant strains, or to use described platforms to discover novel antibiotic adjuvant scaffolds.


Asunto(s)
Antibacterianos , Bacterias , Bacterias/genética , Antibacterianos/química , Farmacorresistencia Microbiana , Transporte Biológico , Farmacorresistencia Bacteriana Múltiple
15.
ACS Infect Dis ; 8(5): 901-910, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35412813

RESUMEN

Bacterial DnaK is an ATP-dependent molecular chaperone important for maintaining cellular proteostasis in concert with cofactor proteins. The cofactor DnaJ delivers non-native client proteins to DnaK and activates its ATPase activity, which is required for protein folding. In the bacterial pathogen Mycobacterium tuberculosis, DnaK is assisted by two DnaJs, DnaJ1 and DnaJ2. Functional protein-protein interactions (PPIs) between DnaK and at least one DnaJ are essential for survival of mycobacteria; hence, these PPIs represent untapped antibacterial targets. Here, we synthesize peptide-based mimetics of DnaJ1 and DnaJ2 N-terminal domains as rational inhibitors of DnaK-cofactor interactions. We find that covalently stabilized DnaJ mimetics are capable of disrupting DnaK-cofactor activity in vitro and prevent mycobacterial recovery from proteotoxic stress in vivo, leading to cell death. Since chaperones and cofactors are highly conserved, we anticipate these results will inform the design of other mimetics to modulate chaperone function across cell types.


Asunto(s)
Proteínas Bacterianas , Chaperonas Moleculares , Mycobacterium tuberculosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Mycobacterium tuberculosis/metabolismo
16.
ACS Infect Dis ; 8(10): 2035-2044, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36106727

RESUMEN

Bacterial glycoconjugates, such as cell surface polysaccharides and glycoproteins, play important roles in cellular interactions and survival. Enzymes called nucleotidyltransferases use sugar-1-phosphates and nucleoside triphosphates (NTPs) to produce nucleoside diphosphate sugars (NDP-sugars), which serve as building blocks for most glycoconjugates. Research spanning several decades has shown that some bacterial nucleotidyltransferases have broad substrate tolerance and can be exploited to produce a variety of NDP-sugars in vitro. While these enzymes are known to be allosterically regulated by NDP-sugars and their fragments, much work has focused on the effect of active site mutations alone. Here, we show that rational mutations in the allosteric site of the nucleotidyltransferase RmlA lead to expanded substrate tolerance and improvements in catalytic activity that can be explained by subtle changes in quaternary structure and interactions with ligands. These observations will help inform future studies on the directed biosynthesis of diverse bacterial NDP-sugars and downstream glycoconjugates.


Asunto(s)
Azúcares de Nucleósido Difosfato , Nucleotidiltransferasas , Bacterias/metabolismo , Glicoconjugados , Ligandos , Mutación , Azúcares de Nucleósido Difosfato/química , Nucleósidos , Nucleotidiltransferasas/genética , Fosfatos , Azúcares
17.
STAR Protoc ; 3(2): 101381, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35600924

RESUMEN

Bacterial DnaK belongs to the Hsp70 chaperone family, which plays a critical role in maintaining proteostasis by catalyzing protein folding, and is a proposed antibacterial target in the pathogen Mycobacterium tuberculosis. Here, we describe an experimental toolbox for evaluating inhibitors against the mycobacterial DnaK chaperone network: a coupled-enzymatic assay to monitor ATPase activity, a proteolytic cleavage assay to study DnaK conformational changes upon ligand addition, as well as a protein renaturation assay to assess chaperone function. For complete details on the use and execution of this protocol, please refer to Hosfelt et al. (2021).


Asunto(s)
Proteínas de Escherichia coli , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína
18.
Cell Chem Biol ; 29(5): 854-869.e9, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34818532

RESUMEN

DnaK is the bacterial homolog of Hsp70, an ATP-dependent chaperone that helps cofactor proteins to catalyze nascent protein folding and salvage misfolded proteins. In the pathogen Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), DnaK and its cofactors are proposed antimycobacterial targets, yet few small-molecule inhibitors or probes exist for these families of proteins. Here, we describe the repurposing of a drug called telaprevir that is able to allosterically inhibit the ATPase activity of DnaK and to prevent chaperone function by mimicking peptide substrates. In mycobacterial cells, telaprevir disrupts DnaK- and cofactor-mediated cellular proteostasis, resulting in enhanced efficacy of aminoglycoside antibiotics and reduced resistance to the frontline TB drug rifampin. Hence, this work contributes to a small but growing collection of protein chaperone inhibitors, and it demonstrates that these molecules disrupt bacterial mechanisms of survival in the presence of different antibiotic classes.


Asunto(s)
Proteínas de Escherichia coli , Mycobacterium tuberculosis , Tuberculosis , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Mycobacterium tuberculosis/metabolismo , Pliegue de Proteína
19.
J Am Chem Soc ; 133(28): 10748-51, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21682301

RESUMEN

The ß-lactams are the most important class of antibiotics in clinical use. Their lethal targets are the transpeptidase domains of penicillin binding proteins (PBPs), which catalyze the cross-linking of bacterial peptidoglycan (PG) during cell wall synthesis. The transpeptidation reaction occurs in two steps, the first being formation of a covalent enzyme intermediate and the second involving attack of an amine on this intermediate. Here we use defined PG substrates to dissect the individual steps catalyzed by a purified E. coli transpeptidase. We demonstrate that this transpeptidase accepts a set of structurally diverse D-amino acid substrates and incorporates them into PG fragments. These results provide new information on donor and acceptor requirements as well as a mechanistic basis for previous observations that noncanonical D-amino acids can be introduced into the bacterial cell wall.


Asunto(s)
Aminoácidos/química , Aminoácidos/metabolismo , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Peptidil Transferasas/metabolismo , Secuencia de Aminoácidos , Escherichia coli/enzimología , Peptidil Transferasas/química , Estereoisomerismo
20.
J Am Chem Soc ; 133(22): 8528-30, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21568328

RESUMEN

Peptidoglycan glycosyltransferases are highly conserved bacterial enzymes that catalyze glycan strand polymerization to build the cell wall. Because the cell wall is essential for bacterial cell survival, these glycosyltransferases are potential antibiotic targets, but a detailed understanding of their mechanisms is lacking. Here we show that a synthetic peptidoglycan fragment that mimics the elongating polymer chain activates peptidoglycan glycosyltransferases by bypassing the rate-limiting initiation step.


Asunto(s)
Modelos Biológicos , Peptidoglicano Glicosiltransferasa/química , Pared Celular/enzimología , Estructura Molecular , Peptidoglicano Glicosiltransferasa/síntesis química , Polimerizacion
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA