Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS Pathog ; 14(1): e1006868, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357389

RESUMEN

Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a transcription factor of the IRF family. IRF8 plays a key role in normal B cell differentiation, a cellular process that is intrinsically associated with Epstein-Barr virus (EBV) reactivation. However, whether IRF8 regulates EBV lytic replication remains unknown. In this study, we utilized a CRISPR/Cas9 genomic editing approach to deplete IRF8 and found that IRF8 depletion dramatically inhibits the reactivation of EBV upon lytic induction. We demonstrated that IRF8 depletion suppresses the expression of a group of genes involved in apoptosis and thus inhibits apoptosis induction upon lytic induction by B cell receptor (BCR) stimulation or chemical induction. The protein levels of caspase-1, caspase-3 and caspase-8 all dramatically decreased in IRF8-depleted cells, which led to reduced caspase activation and the stabilization of KAP1, PAX5 and DNMT3A upon BCR stimulation. Interestingly, caspase inhibition blocked the degradation of KAP1, PAX5 and DNMT3A, suppressed EBV lytic gene expression and viral DNA replication upon lytic induction, suggesting that the reduced caspase expression in IRF8-depleted cells contributes to the suppression of EBV lytic replication. We further demonstrated that IRF8 directly regulates CASP1 (caspase-1) gene expression through targeting its gene promoter and knockdown of caspase-1 abrogates EBV reactivation upon lytic induction, partially through the stabilization of KAP1. Together our study suggested that, by modulating the activation of caspases and the subsequent cleavage of KAP1 upon lytic induction, IRF8 plays a critical role in EBV lytic reactivation.


Asunto(s)
Linfocitos B/inmunología , Caspasa 1/genética , Herpesvirus Humano 4/fisiología , Factores Reguladores del Interferón/fisiología , Activación de Linfocitos , Activación Viral/genética , Linfocitos B/virología , Células Cultivadas , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/virología , Regulación Enzimológica de la Expresión Génica , Células HEK293 , Humanos , Activación de Linfocitos/efectos de los fármacos , Latencia del Virus/genética
2.
PLoS Pathog ; 11(12): e1005346, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26714015

RESUMEN

Epstein-Barr virus (EBV) is etiologically linked to infectious mononucleosis and several human cancers. EBV encodes a conserved protein kinase BGLF4 that plays a key role in the viral life cycle. To provide new insight into the host proteins regulated by BGLF4, we utilized stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics to compare site-specific phosphorylation in BGLF4-expressing Akata B cells. Our analysis revealed BGLF4-mediated hyperphosphorylation of 3,046 unique sites corresponding to 1,328 proteins. Frequency analysis of these phosphosites revealed a proline-rich motif signature downstream of BGLF4, indicating a broader substrate recognition for BGLF4 than its cellular ortholog cyclin-dependent kinase 1 (CDK1). Further, motif analysis of the hyperphosphorylated sites revealed enrichment in ATM, ATR and Aurora kinase substrates while functional analyses revealed significant enrichment of pathways related to the DNA damage response (DDR), mitosis and cell cycle. Phosphorylation of proteins associated with the mitotic spindle assembly checkpoint (SAC) indicated checkpoint activation, an event that inactivates the anaphase promoting complex/cyclosome, APC/C. Furthermore, we demonstrated that BGLF4 binds to and directly phosphorylates the key cellular proteins PP1, MPS1 and CDC20 that lie upstream of SAC activation and APC/C inhibition. Consistent with APC/C inactivation, we found that BGLF4 stabilizes the expression of many known APC/C substrates. We also noted hyperphosphorylation of 22 proteins associated the nuclear pore complex, which may contribute to nuclear pore disassembly and SAC activation. A drug that inhibits mitotic checkpoint activation also suppressed the accumulation of extracellular EBV virus. Taken together, our data reveal that, in addition to the DDR, manipulation of mitotic kinase signaling and SAC activation are mechanisms associated with lytic EBV replication. All MS data have been deposited in the ProteomeXchange with identifier PXD002411 (http://proteomecentral.proteomexchange.org/dataset/PXD002411).


Asunto(s)
Daño del ADN/fisiología , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Secuencia de Aminoácidos , Línea Celular , Cromatografía Liquida , Regulación Viral de la Expresión Génica , Humanos , Immunoblotting , Datos de Secuencia Molecular , Fosforilación , Proteómica/métodos , Transducción de Señal/fisiología , Espectrometría de Masas en Tándem
3.
Mol Cell Proteomics ; 13(2): 632-52, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24335353

RESUMEN

Salinity is a major abiotic stress affecting plant growth and development. Understanding the molecular mechanisms of salt response and defense in plants will help in efforts to improve the salt tolerance of crops. Brachypodium distachyon is a new model plant for wheat, barley, and several potential biofuel grasses. In the current study, proteome and phosphoproteome changes induced by salt stress were the focus. The Bd21 leaves were initially treated with salt in concentrations ranging from 80 to 320 mm and then underwent a recovery process prior to proteome analysis. A total of 80 differentially expressed protein spots corresponding to 60 unique proteins were identified. The sample treated with a median salt level of 240 mm and the control were selected for phosphopeptide purification using TiO2 microcolumns and LC-MS/MS for phosphoproteome analysis to identify the phosphorylation sites and phosphoproteins. A total of 1509 phosphoproteins and 2839 phosphorylation sites were identified. Among them, 468 phosphoproteins containing 496 phosphorylation sites demonstrated significant changes at the phosphorylation level. Nine phosphorylation motifs were extracted from the 496 phosphorylation sites. Of the 60 unique differentially expressed proteins, 14 were also identified as phosphoproteins. Many proteins and phosphoproteins, as well as potential signal pathways associated with salt response and defense, were found, including three 14-3-3s (GF14A, GF14B, and 14-3-3A) for signal transduction and several ABA signal-associated proteins such as ABF2, TRAB1, and SAPK8. Finally, a schematic salt response and defense mechanism in B. distachyon was proposed.


Asunto(s)
Brachypodium/metabolismo , Fosfoproteínas/metabolismo , Hojas de la Planta/metabolismo , Proteoma/metabolismo , Tolerancia a la Sal , Estrés Fisiológico , Brachypodium/genética , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas/genética , Fosfoproteínas/análisis , Fosfoproteínas/genética , Hojas de la Planta/genética , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/análisis , Proteoma/genética , Tolerancia a la Sal/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Estrés Fisiológico/genética , Espectrometría de Masas en Tándem
4.
J Proteome Res ; 14(4): 1727-38, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25652041

RESUMEN

Brachypodium distachyon L., a model plant for cereal crops, has become important as an alternative and potential biofuel grass. In plants, N-glycosylation is one of the most common and important protein modifications, playing important roles in signal recognition, increase in protein activity, stability of protein structure, and formation of tissues and organs. In this study, we performed the first glycoproteome analysis in the seedling leaves of B. distachyon. Using lectin affinity chromatography enrichment and mass-spectrometry-based analysis, we identified 47 glycosylation sites representing 46 N-linked glycoproteins. Motif-X analysis showed that two conserved motifs, N-X-T/S (X is any amino acid, except Pro), were significantly enriched. Further functional analysis suggested that some of these identified glycoproteins are involved in signal transduction, protein trafficking, and quality control and the modification and remodeling of cell-wall components such as receptor-like kinases, protein disulfide isomerase, and polygalacturonase. Moreover, transmembrane helices and signal peptide prediction showed that most of these glycoproteins could participate in typical protein secretory pathways in eukaryotes. The results provide a general overview of protein N-glycosylation modifications during the early growth of seedling leaves in B. distachyon and supplement the glycoproteome databases of plants.


Asunto(s)
Brachypodium/genética , Glicoproteínas/metabolismo , Hojas de la Planta/metabolismo , Plantones/metabolismo , Cromatografía de Afinidad , Cromatografía Líquida de Alta Presión , Biología Computacional , Perfilación de la Expresión Génica , Glicoproteínas/genética , Glicosilación , Espectrometría de Masas , Hojas de la Planta/genética , Proteómica/métodos , Plantones/genética
5.
J Proteome Res ; 13(10): 4281-97, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25145454

RESUMEN

Wheat (Triticum aestivum), one of the most important cereal crops, is often threatened by drought. In this study, water deficit significantly reduced the height of plants and yield of grains. To explore further the effect of drought stress on the development and yield of grains, we first performed a large scale phosphoproteome analysis of developing grains in wheat. A total of 590 unique phosphopeptides, representing 471 phosphoproteins, were identified under well-watered conditions. Motif-X analysis showed that four motifs were enriched, including [sP], [Rxxs], [sDxE], and [sxD]. Through comparative phosphoproteome analysis between well-watered and water-deficit conditions, we found that 63 unique phosphopeptides, corresponding to 61 phosphoproteins, showed significant changes in phosphorylation level (≥2-fold intensities). Functional analysis suggested that some of these proteins may be involved in signal transduction, embryo and endosperm development of grains, and drought response and defense under water-deficit conditions. Moreover, we also found that some chaperones may play important roles in protein refolding or degradation when the plant is subjected to water stress. These results provide a detailed insight into the stress response and defense mechanisms of developmental grains at the phosphoproteome level. They also suggested some potential candidates for further study of transgenosis and drought stress as well as incorporation into molecular breeding for drought resistance.


Asunto(s)
Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Triticum/metabolismo , Agua , Riego Agrícola , Triticum/crecimiento & desarrollo
6.
J Proteome Res ; 13(5): 2381-95, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24679076

RESUMEN

Here, we conducted the first large-scale leaf phosphoproteome analysis of two bread wheat cultivars by liquid chromatography-tandem mass spectrometry. Altogether, 1802 unambiguous phosphorylation sites representing 1175 phosphoproteins implicated in various molecular functions and cellular processes were identified by gene ontology enrichment analysis. Among the 1175 phosphoproteins, 141 contained 3-10 phosphorylation sites. The phosphorylation sites were located more frequently in the N- and C-terminal regions than in internal regions, and ∼70% were located outside the conserved regions. Conservation analysis showed that 90.5% of the phosphoproteins had phosphorylated orthologs in other plant species. Eighteen significantly enriched phosphorylation motifs, of which six were new wheat phosphorylation motifs, were identified. In particular, 52 phosphorylated transcription factors (TFs), 85 protein kinases (PKs), and 16 protein phosphatases (PPs) were classified and analyzed in depth. All the Tyr phosphorylation sites were in PKs such as mitogen-activated PKs (MAPKs) and SHAGGY-like kinases. A complicated cross-talk phosphorylation regulatory network based on PKs such as Snf1-related kinases (SnRKs), calcium-dependent PKs (CDPKs), and glycogen synthase kinase 3 (GSK3) and PPs including PP2C, PP2A, and BRI1 suppressor 1 (BSU1)-like protein (BSL) was constructed and was found to be potentially involved in rapid leaf growth. Our results provide a series of phosphoproteins and phosphorylation sites in addition to a potential network of phosphorylation signaling cascades in wheat seedling leaves.


Asunto(s)
Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteómica/métodos , Plantones/metabolismo , Transducción de Señal , Triticum/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cromatografía Liquida , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estructura Terciaria de Proteína , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem
7.
BMC Genomics ; 15: 375, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24885693

RESUMEN

BACKGROUND: Protein phosphorylation is one of the most important post-translational modifications involved in the regulation of plant growth and development as well as diverse stress response. As a member of the Poaceae, Brachypodium distachyon L. is a new model plant for wheat and barley as well as several potential biofuel grasses such as switchgrass. Vegetative growth is vital for biomass accumulation of plants, but knowledge regarding the role of protein phosphorylation modification during vegetative growth, especially in biofuel plants, is far from comprehensive. RESULTS: In this study, we carried out the first large-scale phosphoproteome analysis of seedling leaves in Brachypodium accession Bd21 using TiO2 microcolumns combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MaxQuant software. A total of 1470 phosphorylation sites in 950 phosphoproteins were identified, and these phosphoproteins were implicated in various molecular functions and basic cellular processes by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Among the 950 phosphoproteins identified, 127 contained 3 to 8 phosphorylation sites. Conservation analysis showed that 93.4% of the 950 phosphoproteins had phosphorylation orthologs in other plant species. Motif-X analysis of the phosphorylation sites identified 13 significantly enriched phosphorylation motifs, of which 3 were novel phosphorylation motifs. Meanwhile, there were 91 phosphoproteins with both multiple phosphorylation sites and multiple phosphorylation motifs. In addition, we identified 58 phosphorylated transcription factors across 21 families and found out 6 significantly over-represented transcription factor families (C3H, Trihelix, CAMTA, TALE, MYB_related and CPP). Eighty-four protein kinases (PKs), 8 protein phosphatases (PPs) and 6 CESAs were recognized as phosphoproteins. CONCLUSIONS: Through a large-scale bioinformatics analysis of the phosphorylation data in seedling leaves, a complicated PKs- and PPs- centered network related to rapid vegetative growth was deciphered in B. distachyon. We revealed a MAPK cascade network that might play the crucial roles during the phosphorylation signal transduction in leaf growth and development. The phosphoproteins and phosphosites identified from our study expanded our knowledge of protein phosphorylation modification in plants, especially in monocots.


Asunto(s)
Brachypodium/metabolismo , Fosfoproteínas/metabolismo , Hojas de la Planta/metabolismo , Proteoma , Plantones/metabolismo , Secuencias de Aminoácidos , Brachypodium/genética , Pared Celular/metabolismo , Bases de Datos Genéticas , Evolución Molecular , Redes y Vías Metabólicas , Fosforilación , Hojas de la Planta/genética , Posición Específica de Matrices de Puntuación , Mapas de Interacción de Proteínas , Proteómica , Transducción de Señal , Factores de Transcripción/metabolismo
8.
Int J Mol Sci ; 13(12): 16065-83, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23443111

RESUMEN

A comparative proteomic analysis of drought-responsive proteins during grain development of two wheat varieties Kauz (strong resistance to drought stress) and Janz (sensitive to drought stress) was performed by using linear and nonlinear 2-DE and MALDI-TOF mass spectrometry technologies. Results revealed that the nonlinear 2-DE had much higher resolution than the linear 2-DE. A total of 153 differentially expressed protein spots were detected by both 2-DE maps, of which 122 protein spots were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry. The identified differential proteins were mainly involved in carbohydrate metabolism (26%), detoxification and defense (23%), and storage proteins (17%). Some key proteins demonstrated significantly different expression patterns between the two varieties. In particular, catalase isozyme 1, WD40 repeat protein, LEA and alpha-amylase inhibitors displayed an upregulated expression pattern in Kauz, whereas they were downregulated or unchanged in Janz. Small and large subunit ADP glucose pyrophosphorylase, ascorbate peroxidase and G beta-like protein were all downregulated under drought stress in Janz, but had no expression changes in Kauz. Sucrose synthase and triticin precursor showed an upregulated expression pattern under water deficits in both varieties, but their upregulation levels were much higher in Kauz than in Janz. These differentially expressed proteins could be related to the biochemical pathways for stronger drought resistance of Kauz.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/biosíntesis , Proteoma/biosíntesis , Triticum/metabolismo , Deshidratación/genética , Deshidratación/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
Virology ; 540: 75-87, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31743858

RESUMEN

Epstein-Barr virus (EBV), a major human oncogenic pathogen, establishes life-long persistent infections. In latently infected B lymphocytes, the virus persists as an episome in the nucleus. Periodic reactivation of latent virus is controlled by both viral and cellular factors. Our recent studies showed that interferon regulatory factor 8 (IRF8) is required for EBV lytic reactivation while protein inhibitor of activated STAT1 (PIAS1) functions as an EBV restriction factor to block viral reactivation. Here, we show that IRF8 directly binds to the EBV genome and regulates EBV lytic gene expression together with PU.1 and EBV transactivator RTA. Furthermore, our study reveals that PIAS1 antagonizes IRF8/PU.1-mediated lytic gene activation through binding to and inhibiting IRF8. Together, our study establishes IRF8 as a transcriptional activator in promoting EBV reactivation and defines PIAS1 as an inhibitor of IRF8 to limit lytic gene expression.


Asunto(s)
Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Factores Reguladores del Interferón/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Secuencia de Bases , Genoma Viral , Humanos , Modelos Biológicos , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Transporte de Proteínas , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo
10.
Cell Rep ; 28(2): 449-459.e5, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31291580

RESUMEN

To ensure a successful infection, herpesviruses have developed elegant strategies to counterbalance the host anti-viral responses. Sterile alpha motif and HD domain 1 (SAMHD1) was recently identified as an intrinsic restriction factor for a variety of viruses. Aside from HIV-2 and the related simian immunodeficiency virus (SIV) Vpx proteins, the direct viral countermeasures against SAMHD1 restriction remain unknown. Using Epstein-Barr virus (EBV) as a primary model, we discover that SAMHD1-mediated anti-viral restriction is antagonized by EBV BGLF4, a member of the conserved viral protein kinases encoded by all herpesviruses. Mechanistically, we find that BGLF4 phosphorylates SAMHD1 and thereby inhibits its deoxynucleotide triphosphate triphosphohydrolase (dNTPase) activity. We further demonstrate that the targeting of SAMHD1 for phosphorylation is a common feature shared by beta- and gamma-herpesviruses. Together, our findings uncover an immune evasion mechanism whereby herpesviruses exploit the phosphorylation of SAMHD1 to thwart host defenses.


Asunto(s)
Herpesviridae/patogenicidad , Proteínas Quinasas/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Proteínas Virales/metabolismo , Humanos , Replicación Viral
11.
Cell Rep ; 21(12): 3445-3457, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29262325

RESUMEN

Epstein-Barr virus (EBV) in tumor cells is predominately in the latent phase, but the virus can undergo lytic reactivation in response to various stimuli. However, the cellular factors that control latency and lytic replication are poorly defined. In this study, we demonstrated that a cellular factor, PIAS1, restricts EBV lytic replication. PIAS1 depletion significantly facilitated EBV reactivation, while PIAS1 reconstitution had the opposite effect. Remarkably, we found that various lytic triggers promote caspase-dependent cleavage of PIAS1 to antagonize PIAS1-mediated restriction and that caspase inhibition suppresses EBV replication through blocking PIAS1 cleavage. We further demonstrated that a cleavage-resistant PIAS1 mutant suppresses EBV replication upon B cell receptor activation. Mechanistically, we demonstrated that PIAS1 acts as an inhibitor for transcription factors involved in lytic gene expression. Collectively, these results establish PIAS1 as a key regulator of EBV lytic replication and uncover a mechanism by which EBV exploits apoptotic caspases to antagonize PIAS1-mediated restriction.


Asunto(s)
Herpesvirus Humano 4/fisiología , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Replicación Viral , Caspasas/metabolismo , Línea Celular Tumoral , Células Cultivadas , Células HEK293 , Humanos , Proteínas Inhibidoras de STAT Activados/genética , Proteolisis , Receptores de Antígenos de Linfocitos B/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Factores de Transcripción/metabolismo
12.
OMICS ; 21(1): 27-37, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28271981

RESUMEN

Epstein-Barr virus (EBV) is a human γ-herpesvirus associated with cancer, including Burkitt lymphoma, nasopharyngeal, and gastric carcinoma. EBV reactivation in latently infected B cells is essential for persistent infection whereby B cell receptor (BCR) activation is a physiologically relevant stimulus. Yet, a global view of BCR activation-regulated protein ubiquitination is lacking when EBV is actively replicating. We report here, for the first time, the long-term effects of IgG cross-linking-regulated protein ubiquitination and offer a basis for dissecting the cellular environment during the course of EBV lytic replication. Using the Akata-BX1 (EBV+) and Akata-4E3 (EBV-) Burkitt lymphoma cells, we monitored the dynamic changes in protein ubiquitination using quantitative proteomics. We observed temporal alterations in the level of ubiquitination at ∼150 sites in both EBV+ and EBV- B cells post-IgG cross-linking, compared with controls with no cross-linking. The majority of protein ubiquitination was downregulated. The upregulated ubiquitination events were associated with proteins involved in RNA processing. Among the downregulated ubiquitination events were proteins involved in apoptosis, ubiquitination, and DNA repair. These comparative and quantitative proteomic observations represent the first analysis on the effects of IgG cross-linking at later time points when the majority of EBV genes are expressed and the viral genome is actively being replicated. In all, these data enhance our understanding of mechanistic linkages connecting protein ubiquitination, RNA processing, apoptosis, and the EBV life cycle.


Asunto(s)
Herpesvirus Humano 4/patogenicidad , Proteómica/métodos , Linfocitos B/metabolismo , Línea Celular Tumoral , Interacciones Huésped-Patógeno , Humanos , Ubiquitinación
13.
J Proteomics ; 143: 93-105, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27095598

RESUMEN

UNLABELLED: Salinity is a major abiotic stress factor affecting crops production and productivity. Triticum monococcum is closely related to Triticum urartu (A(U)A(U)), which is used as a model plant of wheat A genome study. Here, salt stress induced dynamic proteome and phosphoproteome profiling was focused. The T. monococcum seedlings were initially treated with different concentrations of NaCl ranging from 80 to 320mM for 48h followed by a recovery process for 48h prior to proteomic and phosphoproteomic analysis. As a result, a total of 81 spots corresponding to salt stress and recovery were identified by MALDI-TOF/TOF-MS from 2-DE gels. These proteins were mainly involved in regulatory, stress defense, protein folding/assembly/degradation, photosynthesis, carbohydrate metabolism, energy production and transportation, protein metabolism, and cell structure. Pro-Q Diamond staining was used to detect the phosphoproteins. Finally, 20 spots with different phosphorylation levels during salt treatment or recovery compared with controls were identified. A set of potential salt stress response and defense biomarkers was identified, such as cp31BHv, betaine-aldehyde dehydrogenase, leucine aminopeptidase 2, Cu/Zn superoxide dismutase, and 2-Cys peroxiredoxin BAS1, which could lead to a better understanding of the molecular basis of salt response and defense in food crops. BIOLOGICAL SIGNIFICANCE: Soil salinity reduces the yield of the major crops, which is one of the severest problems in irrigated agriculture worldwide. However, how crops response and defense during different levels of salt treatment and recovery processes is still unclear, especially at the post-translational modification level. T. monococcum is a useful model for common wheat. Thus, proteomic and phosphoproteomic analyses of T. monococcum leaves were performed in our study, which provided novel insights into the underlying salt response and defense mechanisms in wheat and other crops.


Asunto(s)
Fosfoproteínas/análisis , Proteómica/métodos , Salinidad , Tolerancia a la Sal , Estrés Fisiológico , Triticum/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/fisiología , Procesamiento Proteico-Postraduccional
14.
Front Plant Sci ; 7: 1567, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27812362

RESUMEN

Oxidative stress in plants can be triggered by many environmental stress factors, such as drought and salinity. Brachypodium distachyon is a model organism for the study of biofuel plants and crops, such as wheat. Although recent studies have found many oxidative stress response-related proteins, the mechanism of microRNA (miRNA)-mediated oxidative stress response is still unclear. Using next generation high-throughput sequencing technology, the small RNAs were sequenced from the model plant B. distachyon 21 (Bd21) under H2O2 stress and normal growth conditions. In total, 144 known B. distachyon miRNAs and 221 potential new miRNAs were identified. Further analysis of potential new miRNAs suggested that 36 could be clustered into known miRNA families, while the remaining 185 were identified as B. distachyon-specific new miRNAs. Differential analysis of miRNAs from the normal and H2O2 stress libraries identified 31 known and 30 new H2O2 stress responsive miRNAs. The expression patterns of seven representative miRNAs were verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis, which produced results consistent with those of the deep sequencing method. Moreover, we also performed RT-qPCR analysis to verify the expression levels of 13 target genes and the cleavage site of 5 target genes by known or novel miRNAs were validated experimentally by 5' RACE. Additionally, a miRNA-mediated gene regulatory network for H2O2 stress response was constructed. Our study identifies a set of H2O2-responsive miRNAs and their target genes and reveals the mechanism of oxidative stress response and defense at the post-transcriptional regulatory level.

15.
J Proteomics ; 128: 388-402, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26344133

RESUMEN

The plant oxidative stress response is vital for defense against various abiotic and biotic stresses. In this study, ultrastructural changes and the proteomic response to H2O2 stress in roots and leaves of the model plant Brachypodium distachyon were studied. Transmission electron microscopy (TEM) showed that the ultrastructural damage in roots was more serious than in leaves. Particularly, the ultrastructures of organelles and the nucleus in root tip cells were damaged, leading to the inhibition of normal biological activities of roots, which then spread throughout the plant. Based on two-dimensional electrophoresis (2-DE) and MALDI-TOF/TOF-MS, 84 and 53 differentially accumulated protein (DAP) spots representing 75 and 45 unique proteins responsive to H2O2 stress in roots and leaves, respectively, were identified. These protein species were mainly involved in signal transduction, energy metabolism, redox homeostasis/stress defense, protein folding/degradation, and cell wall/cell structure. Interestingly, two 14-3-3 proteins (GF14-B and GF14-D) were identified as DAPs in both roots and leaves. Protein-protein interaction (PPI) analysis revealed a synergetic H2O2-responsive network.


Asunto(s)
Brachypodium/fisiología , Peróxido de Hidrógeno/administración & dosificación , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Proteoma/metabolismo , Estrés Fisiológico/fisiología , Brachypodium/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/fisiología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Estrés Fisiológico/efectos de los fármacos , Integración de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA