Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 535: 33-38, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33340763

RESUMEN

Nano titanium implants induce osteogenesis, but how osteoblasts respond to this physical stimulation remains unclear. In this study, we tried to reveal the role of the mitochondrial fission-fusion of osteoblasts in response to a nano titanium surface during the process of osteogenesis, which is important for the design of the surface structure of titanium implants. A TiO2 nanotube array (nano titanium, NT) was fabricated by anodization, and a smooth surface (smooth titanium, ST) was used as a control. We investigated changes in the mitochondrial fission-fusion (MFF) dynamics in MC3T3-E1 cells on the NT surface with those on the ST surface by performing transmission electron microscopy (TEM), confocal laser scanning microscope (CLSM) and real-time PCR. At the same time, we also detected changes in the MFF and osteogenic differentiation of MC3T3-E1 cells after DRP1 downregulation with RNA interference. Cells on the NT surface exhibited more mitochondrial fusion than those on the ST surface, and DRP1 was the key regulatory molecule. Interestingly, DRP1 increased for only a short time at the early stage on the NT surface, and when DRP1 was inhibited by siRNA at the early stage, the osteogenic differentiation of MC3T3-E1 cells significantly decreased. In conclusion, DRP1-regulated mitochondrial dynamics played a key role in the nanotopography-accelerated osteogenic differentiation of MC3T3-E1 cells.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Nanotubos/toxicidad , Osteogénesis/efectos de los fármacos , Titanio/toxicidad , Animales , Diferenciación Celular/genética , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Dinaminas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Dinámicas Mitocondriales/genética , Nanotubos/ultraestructura , Osteogénesis/genética , Propiedades de Superficie
2.
Biomed Mater ; 18(2)2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36720171

RESUMEN

Nanotopography can promote osseointegration, but how bone marrow mesenchymal stem cells (BMMSCs) respond to this physical stimulus is unclear. Here, we found that early exposure of BMMSCs to nanotopography (6 h) caused mitochondrial fission rather than fusion, which was necessary for osseointegration. We analyzed the changes in mitochondrial morphology and function of BMMSCs located on the surfaces of NT100 (100 nm nanotubes) and ST (smooth) by super-resolution microscopy and other techniques. Then, we found that both ST and NT100 caused a significant increase in mitochondrial fission early on, but NT100 caused mitochondrial fission much earlier than those on ST. In addition, the mitochondrial functional statuses were good at the 6 h time point, this is at odds with the conventional wisdom that fusion is good. This fission phenomenon adequately protected mitochondrial membrane potential (MMP) and respiration and reduced reactive oxygen species. Interestingly, the MMP and oxygen consumption rate of BMMSCs were reduced when mitochondrial fission was inhibited by Mdivi-1(Inhibition of dynamin-related protein 1 fission) in the early stage. In addition, the effect on osseointegration was significantly worse, and this effect did not improve with time. Taken together, the findings indicate that early mitochondrial fission plays an important role in nanotopography-mediated promotion of osseointegration, which is of great significance to the surface structure design of biomaterials.


Asunto(s)
Células Madre Mesenquimatosas , Nanotubos , Oseointegración , Dinámicas Mitocondriales
3.
Biomaterials ; 253: 120095, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32445809

RESUMEN

Defects of either articular cartilage or subchondral bone would destroy the structural integrity and functionality of the joint. Reconstruction of osteochondral defects requires difunctional scaffolds that simultaneously induce cartilage and subchondral bone morphogenesis, however, high-performance cartilage reconstructive scaffolds remain a considerable challenge. In this study, a solvent-free urethane crosslinking and spontaneous pore-forming procedure under room temperature was proposed and optimized to produce PEGylated poly(glycerol sebacate) (PEGS) scaffolds with controllable crosslinking degrees and hierarchical macro-/micro-porosities. Based on the economical and feasible preparative approach, the viscoelastic PEGS-12h with low crosslinking degree was demonstrated to significantly stimulate chondrogenic differentiation, maintain chondrocyte phenotype and enhance cartilage matrix secretion compared to elastic polymer with high crosslinking degree, emphasizing the importance of matrix viscoelasticity in cartilage regeneration. On this basis, the viscoelastic low-crosslinked PEGS-12h was combined with the well-acknowledged osteoinductive mesoporous bioactive glass (MBG) to construct a difunctional PEGS/MBG bilayer scaffold, and evaluated in a full-thickness osteochondral defect model in vivo. The PEGS/MBG bilayer scaffold successfully reconstructed well-integrated articular hyaline cartilage and its subchondral bone in 12 weeks, exhibiting extraordinary regenerative efficiency. The results indicated that the viscoelastic PEGS scaffold and PEGS/MBG bilayer scaffold proposed in this study made an excellent candidate for cartilage and osteochondral regeneration, and was expected for clinical translation in the future.


Asunto(s)
Cartílago Articular , Andamios del Tejido , Decanoatos , Glicerol/análogos & derivados , Polietilenglicoles , Polímeros , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA