Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroimage ; 279: 120321, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37574119

RESUMEN

Accurate stroke assessment and consequent favorable clinical outcomes rely on the early identification and quantification of aneurysmal subarachnoid hemorrhage (aSAH) in non-contrast computed tomography (NCCT) images. However, hemorrhagic lesions can be complex and difficult to distinguish manually. To solve these problems, here we propose a novel Hybrid 2D/3D UNet deep-learning framework for automatic aSAH identification and quantification in NCCT images. We evaluated 1824 consecutive patients admitted with aSAH to four hospitals in China between June 2018 and May 2022. Accuracy and precision, Dice scores and intersection over union (IoU), and interclass correlation coefficients (ICC) were calculated to assess model performance, segmentation performance, and correlations between automatic and manual segmentation, respectively. A total of 1355 patients with aSAH were enrolled: 931, 101, 179, and 144 in four datasets, of whom 326 were scanned with Siemens, 640 with Philips, and 389 with GE Medical Systems scanners. Our proposed deep-learning method accurately identified (accuracies 0.993-0.999) and segmented (Dice scores 0.550-0.897) hemorrhage in both the internal and external datasets, even combinations of hemorrhage subtypes. We further developed a convenient AI-assisted platform based on our algorithm to assist clinical workflows, whose performance was comparable to manual measurements by experienced neurosurgeons (ICCs 0.815-0.957) but with greater efficiency and reduced cost. While this tool has not yet been prospectively tested in clinical practice, our innovative hybrid network algorithm and platform can accurately identify and quantify aSAH, paving the way for fast and cheap NCCT interpretation and a reliable AI-based approach to expedite clinical decision-making for aSAH patients.


Asunto(s)
Aprendizaje Profundo , Accidente Cerebrovascular , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Medios de Contraste
2.
BMC Cancer ; 23(1): 133, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759763

RESUMEN

BACKGROUND: Transporter associated with antigen processing 1 (TAP1) is a molecule involved in processing and presentation of major histocompatibility complex class I restricted antigens, including tumor-associated antigens. TAP1 participates in tumor immunity, and is aberrantly expressed in multiple cancer types; METHODS: Transcriptome profiles were obtained from The Cancer Genome Atlas and Genotype-Tissue Expression databases. Genetic alterations, protein distribution, and interaction information for TAP1 were downloaded from cBioPortal, Human Protein Atlas and Compartmentalized Protein-Protein Interaction, respectively. Single-cell analyses of TAP1 across cancers were conducted via the Tumor Immune Single-cell Hub website. Gene set enrichment analysis was employed to investigate TAP1-associated functional mechanisms and processes. Immune cell infiltration was explored using Tumor Immune Estimation Resource 2.0. Pan-cancer correlations between TAP1 expression and immunotherapy biomarkers were explored using the Spearman's correlation test. Associations with immunotherapy responses were also investigated using clinicopathological and prognostic information from cohorts of patients with cancer receiving immune checkpoint inhibitors. RESULTS: TAP1 expression was elevated in most cancer types and exhibited distinct prognostic value. Immune cells expressed more TAP1 than malignant cells within most tumors. TAP1 expression was significantly correlated with immune-related pathways, T-lymphocyte infiltration, and immunotherapeutic biomarkers. Clinical cohort validation revealed a significant correlation with immune therapeutic effects and verified the prognostic role of TAP1 in immunotherapy. Western blot assay indicated that TAP1 is upregulated in glioblastoma compared with adjacent normal brain tissues. CONCLUSION: TAP1 is a robust tumor prognostic biomarker and a novel predictor of clinical prognosis and immunotherapeutic responses in various cancer types.


Asunto(s)
Presentación de Antígeno , Glioblastoma , Humanos , Biomarcadores de Tumor , Western Blotting , Inmunoterapia , Proteínas de Transporte de Membrana , Pronóstico , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/genética
3.
Cancer Cell Int ; 22(1): 275, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064705

RESUMEN

BACKGROUND: The p21-activated kinase (PAK) family (PAKs) plays a key role in the formation and development of human tumors. However, a systematic analysis of PAKs in human cancers is lacking and the potential role of PAKs in cancer immunity has not been explored. METHODS: We used datasets from in The Cancer Genome Atlas (TCGA) database and Genotype-Tissue Expression database (GTEx). RESULTS: Based on TCGA datasets most PAKs show noteworthy differences in expression between tumors and corresponding normal tissues or across different tumor tissues. Patients with high expression of PAKs often show a worse prognosis. However, copy number variation, mutation, and DNA methylation of PAKs have limited impact on tumor development. Further analysis showed that the impact of PAKs on immunity varies with the type of tumor and the respective tumor microenvironment. PAK1 and PAK4 may be stronger predictors of immune characteristics, and are more suitable as drugs and molecular therapeutic targets. Furthermore, Cox regression analysis revealed that a PAK gene signature could be used as an independent prognostic factor for lower grade glioma (LGG) and glioblastoma (GBM). Gene set enrichment analysis (GSEA) analysis indicated that PAK genes may affect the occurrence and development of GBM through the PI3K signaling pathway. Further experiments verified that PAK1 and AKT1 have a significant interaction in GBM cells, and inhibiting the overactivation of PAK1 can significantly inhibit the proliferation of GBM cells. CONCLUSIONS: Our study provides a rationale for further research on the prognostic and therapeutic potential of PAKs in human tumors.

4.
J Neurooncol ; 154(2): 131-144, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34357490

RESUMEN

BACKGROUND: Circular RNA (circRNA) has been demonstrated to play key roles in regulating glioma progression. Understanding the regulatory mechanism of circRNA in glioma is vital to reveal the pathogenesis of glioma and develop novel therapeutic strategies. Therefore, our study focuses on the role and underlying mechanism of Circ_CLIP2 in glioma. METHODS: The expression of Circ_CLIP2, miR-195-5p and HMGB3 in glioma cells and tissues were analyzed using qRT-PCR. Cell proliferation was determined with colony formation and MTT assays. Cell cycle and apoptosis were examined by flow cytometry. Western blot was conducted for analyzing HMGB3, PCNA, Bax, Bcl-2, cleaved-caspase 3, Wnt-1 and ß-catenin. Dual-luciferase reporter assay was measured to investigate the interaction among Circ_CLIP2, miR-195-5p and HMGB3. RESULTS: The expression of Circ_CLIP2 and HMGB3 were increased while miR-195-5p was down-regulated in glioma cells and patients. Silencing of Circ_CLIP2 inhibited cell proliferation, enhanced cell apoptosis and inhibited the Wnt/ß-catenin signaling pathway. Circ_CLIP2 suppressed miR-195-5p expression by directly sponging miR-195-5p. MiR-195-5p inhibited HMGB3 expression via directly targeting HMGB3. Knockdown of miR-195-5p facilitated cell proliferation, inhibited cell apoptosis and activated Wnt/ß-catenin signaling, which were reversed by silencing of HMGB3. CONCLUSION: Knockdown of Circ_CLIP2 suppresses glioma progression by targeting miR-195-5p/HMGB3 thus inhibiting Wnt/ß-catenin signaling. This study may provide potential therapeutic targets against glioma.


Asunto(s)
Glioma , Proteína HMGB3 , MicroARNs , Proliferación Celular , Glioma/genética , Humanos , MicroARNs/genética , ARN Circular , beta Catenina
5.
Med Sci Monit ; 26: e926440, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33085656

RESUMEN

BACKGROUND Glutathione peroxidase 1 (GPX1) is an essential component of the intracellular antioxidant enzyme system, but little is known about the role of GPX1 in the progression of malignancy in gliomas. Using public datasets, this study investigated the prognostic role of GPX1 and immune infiltrates in glioma. MATERIAL AND METHODS We investigated GPX1 expression levels in different cancers using the ONCOMINE and Tumor Immune Estimation Resource (TIMER) datasets. We also explored the prognostic landscape of GPX1 in gliomas based on The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets. Some significant pathways were identified by function enrichment analysis. We then explored the association between GPX1 expression and levels of tumor-infiltrating immune cells based on TIMER and Gene Expression Profiling Interactive Analysis (GEPIA) datasets. RESULTS Expression of GPX1 in brain and central nervous system cancers is at a much high level than in normal tissues, and it is higher in glioblastoma (GBM) than in lower-grade glioma (LGG). We found GPX1 expression to be positively correlated with the malignant clinicopathologic characteristics of gliomas. Univariate analysis and multivariate analysis revealed that overexpression of GPX1 was correlated with a worse prognosis in patients, and a nomogram indicated that GPX1 expression can predict clinical prognosis of glioma. Function enrichment analysis showed that some important pathways are related to glioma malignancy. Expression of GPX1 was positively associated with infiltrating levels of 6 types of immune cells and most of their gene markers in GBM and LGG. CONCLUSIONS These results indicate that GPX1 is an independent prognostic factor and a novel biomarker for predicting the progression of malignancy in gliomas, which is associated with immune infiltration.


Asunto(s)
Neoplasias del Sistema Nervioso Central/metabolismo , Glioma/metabolismo , Glutatión Peroxidasa/metabolismo , Biomarcadores de Tumor/metabolismo , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Glutatión Peroxidasa GPX1
6.
Tissue Cell ; 88: 102406, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761792

RESUMEN

BACKGROUND: Previous evidences has highlighted the pivotal role of NOD-like receptor family pyrin domain-containing 3 (NLRP3)-mediated inflammasomes and pyroptosis activation in driving tumor malignancy and shaping the tumor microenvironment. Herein, we aimed to elucidate the impact of high-mobility group box 3 (HMGB3) released in glioma-derived exosomes on macrophage infiltration in gliomas, NLRP3 inflammasome activation and polarization. METHODS: Transcripts and protein levels of HMGB3, and cytokines associated with macrophage phenotypes and pyroptosis were assessed in glioma tissues and cell lines (U251, LN229, T98G, A172) using qRT-PCR and/or Western blot analysis. Exosomes secreted from LN229 and NHA cells were isolated via differential ultracentrifugation and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and analysis of exosome-related markers. PKH67 staining was employed to examine exosomes uptake by THP-1 differentiated macrophages. Flow cytometry was utilized to assess macrophage pyroptotic rates and polarization-related markers. RESULTS: HMGB3 expression was elevated in glioma tissues, serum samples and tumor cell lines. Kaplan-Meier curves revealed a positive correlation between higher HMGB3 expression and poor overall survival and recurrence-free survival. Moreover, glioma tissues with increased HMGB3 expression exhibited significant upregulation of M2 macrophages markers (CD68, CD206, Arg1) and NLRP3 inflammasome components (NLRP3, IL-1ß, ASC), suggesting that HMGB3 was closely associated with macrophage infiltration and NLRP3 inflammasome activation. Notably, HMGB3 was found to be enriched in glioma cell- secreted exosomes and could be internalized by macrophages. Knockdown of HMGB3 in glioma cell exosomes could restrain M2 macrophage polarization, NLRP3 inflammasome activation and pyroptosis. CONCLUSION: These findings suggested that glioma cells secreted exosomal HMGB3 could facilitate macrophage M2 polarization, pyroptosis and inflammatory infiltration, indicating HMGB3 might be a poor prognosis factor for glioma.


Asunto(s)
Exosomas , Glioma , Proteína HMGB3 , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Macrófagos Asociados a Tumores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Exosomas/metabolismo , Glioma/patología , Glioma/metabolismo , Glioma/genética , Humanos , Inflamasomas/metabolismo , Línea Celular Tumoral , Proteína HMGB3/metabolismo , Proteína HMGB3/genética , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , Masculino , Femenino , Microambiente Tumoral , Macrófagos/metabolismo , Macrófagos/patología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-38824270

RESUMEN

BACKGROUND: Drug resistance is one of the major reasons of the poor prognosis and recurs frequently in glioma. Ferroptosis is considered to be a new therapeutic strategy for glioma. METHODS: Microsomal glutathione S-transferase 1 (MGST1) expression in glioma samples was ensured through GAPIA database, qRT-PCR, western blotting assay and immunohistochemistry. The interaction between zinc finger protein 384 (ZNF384) and MGST1 promoter was analyzed through UCSC and JASPAR databases and further verified by ChIP and luciferase reporter assay. Cell viability and IC50 value of temozolomide (TMZ) was measured by CCK-8 assay. The production of MDA, GSH and ROS and the level of Fe2+ were determined using the corresponding kit. RESULTS: MGST1 expression was increased in clinical glioma tissues and glioma cells. MGST1 expression was increased but ferroptosis was suppressed in TMZ-resistant cells when contrasted to parent cells. MGST1 silencing downregulated IC50 value of TMZ and cell viability but facilitated ferroptosis in TMZ-resistant cells and parent glioma cells. Moreover, our data indicated that ZNF384 interacted with MGST1 promoter and facilitated MGST1 expression. ZNF384 was also increased expression in TMZ-resistant cells, and showed a positive correlation with MGST1 expression in clinical level. ZNF384 decreasing enhanced the sensitivity of resistant cells to TMZ, while the effect of ZNF384 could be reversed by overexpression of MGST1. CONCLUSION: MGST1 transcription is regulated by transcription factor ZNF384 in TMZ-resistant cells. ZNF384 confers the resistance of glioma cells to TMZ through inhibition of ferroptosis by positively regulating MGST1 expression. The current study may provide some new understand to the mechanism of TMZ resistance in glioma.

8.
Int J Surg ; 110(6): 3839-3847, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489547

RESUMEN

BACKGROUND: Deep learning (DL)-assisted detection and segmentation of intracranial hemorrhage stroke in noncontrast computed tomography (NCCT) scans are well-established, but evidence on this topic is lacking. MATERIALS AND METHODS: PubMed and Embase databases were searched from their inception to November 2023 to identify related studies. The primary outcomes included sensitivity, specificity, and the Dice Similarity Coefficient (DSC); while the secondary outcomes were positive predictive value (PPV), negative predictive value (NPV), precision, area under the receiver operating characteristic curve (AUROC), processing time, and volume of bleeding. Random-effect model and bivariate model were used to pooled independent effect size and diagnostic meta-analysis data, respectively. RESULTS: A total of 36 original studies were included in this meta-analysis. Pooled results indicated that DL technologies have a comparable performance in intracranial hemorrhage detection and segmentation with high values of sensitivity (0.89, 95% CI: 0.88-0.90), specificity (0.91, 95% CI: 0.89-0.93), AUROC (0.94, 95% CI: 0.93-0.95), PPV (0.92, 95% CI: 0.91-0.93), NPV (0.94, 95% CI: 0.91-0.96), precision (0.83, 95% CI: 0.77-0.90), DSC (0.84, 95% CI: 0.82-0.87). There is no significant difference between manual labeling and DL technologies in hemorrhage quantification (MD 0.08, 95% CI: -5.45-5.60, P =0.98), but the latter takes less process time than manual labeling (WMD 2.26, 95% CI: 1.96-2.56, P =0.001). CONCLUSION: This systematic review has identified a range of DL algorithms that the performance was comparable to experienced clinicians in hemorrhage lesions identification, segmentation, and quantification but with greater efficiency and reduced cost. It is highly emphasized that multicenter randomized controlled clinical trials will be needed to validate the performance of these tools in the future, paving the way for fast and efficient decision-making during clinical procedure in patients with acute hemorrhagic stroke.


Asunto(s)
Aprendizaje Profundo , Hemorragias Intracraneales , Accidente Cerebrovascular , Tomografía Computarizada por Rayos X , Humanos , Hemorragias Intracraneales/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Sensibilidad y Especificidad
9.
J Neurosurg ; 141(2): 343-354, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552240

RESUMEN

OBJECTIVE: The relationships between immediate bleeding severity, postoperative complications, and long-term functional outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH) remain uncertain. Here, the authors apply their recently developed automated deep learning technique to quantify total bleeding volume (TBV) in patients with aSAH and investigate associations between quantitative TBV and secondary complications, adverse long-term functional outcomes, and death. METHODS: Electronic health record data were extracted for adult patients admitted to a single institution within 72 hours of aSAH onset between 2018 and 2021. An automatic deep learning model was used to fully segment and quantify TBV on admission noncontrast head CT images. Patients were subgrouped by TBV quartile, and multivariable logistic regression, restricted cubic splines, and subgroup analysis were used to explore the relationships between TBV and each clinical outcome. RESULTS: A total of 819 patients were included in the study. Sixty-six (8.1%) patients developed hydrocephalus, while 43 (5.3%) experienced rebleeding, 141 (17.2%) had delayed cerebral ischemia, 88 (10.7%) died in the 12 months after discharge, and 208 (25.7%) had a modified Rankin Scale score ≥ 3 12 months after discharge. On multivariable analysis, patients in the highest TBV quartile (> 37.94 ml) had an increased risk of hydrocephalus (adjusted OR [aOR] 4.38, 95% CI 1.61-11.87; p = 0.004), rebleeding (aOR 3.26, 95% CI 1.03-10.33; p = 0.045), death (aOR 6.92, 95% CI 1.89-25.37; p = 0.004), and 12-month disability (aOR 3.30, 95% CI 1.62-6.72; p = 0.001) compared with the lowest TBV quantile (< 8.34 ml). The risks of hydrocephalus (nonlinear, p = 0.025), rebleeding, death, and disability (linear, p > 0.05) were positively associated with TBV by restricted cubic splines. In subgroup analysis, TBV had a stronger effect on 12-month outcome in female than male patients (p for interaction = 0.0499) and on rebleeding prevalence in patients with endovascular coiling than those with surgical clipping (p for interaction = 0.008). CONCLUSIONS: Elevated TBV is associated with a greater risk of hydrocephalus, rebleeding, death, and poor prognosis.


Asunto(s)
Aprendizaje Profundo , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/diagnóstico por imagen , Hemorragia Subaracnoidea/mortalidad , Hemorragia Subaracnoidea/cirugía , Hemorragia Subaracnoidea/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/cirugía , Hidrocefalia/etiología , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
10.
Heliyon ; 10(6): e27510, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38510043

RESUMEN

N1-methyladenosine (m1A) modification is a crucial post-transcriptional regulatory mechanism of messenger RNA (mRNA) in living organisms. Few studies have focused on analysis of m1A regulators in lower-grade gliomas (LGG). We employed the Nonnegative Matrix Factorization (NMF) technique on The Cancer Genome Atlas (TCGA) dataset to categorize LGG patients into 2 groups. These groups exhibited substantial disparities in terms of both overall survival (OS) and levels of infiltrating immune cells. We collected the significantly differentially expressed immune-related genes between the 2 clusters, and performed LASSO regression analysis to obtain m1AScores, and established an m1A-related immune-related gene signature (m1A-RIGS). Next, we categorized all patients with LGG into high- and low-risk subgroups, predictive significance of m1AScore was confirmed by conducting univariate/multivariate Cox regression analyses. Additionally, we confirmed variations in immune-related cells and ssGSEA and among the high-/low-risk subcategories in the TCGA dataset. Finally, our study characterized the effects of MSR1 and BIRC5 on LGG cells utilizing Edu assay and flow cytometry to explore the effects of modulation of these genes on glioma. The results of this study suggested that m1A-RIGS may be an excellent prognostic indicator for patients with LGG, and could also promote development of novel immune-based treatment strategies for LGG. Additionally, BIRC5 and MSR1 may be potential therapeutic targets for LGG.

11.
Aging (Albany NY) ; 16(5): 4654-4669, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38431285

RESUMEN

OBJECTIVE: Accurate prognostic prediction in patients with high-grade aneruysmal subarachnoid hemorrhage (aSAH) is essential for personalized treatment. In this study, we developed an interpretable prognostic machine learning model for high-grade aSAH patients using SHapley Additive exPlanations (SHAP). METHODS: A prospective registry cohort of high-grade aSAH patients was collected in one single-center hospital. The endpoint in our study is a 12-month follow-up outcome. The dataset was divided into training and validation sets in a 7:3 ratio. Machine learning algorithms, including Logistic regression model (LR), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost), were employed to develop a prognostic prediction model for high-grade aSAH. The optimal model was selected for SHAP analysis. RESULTS: Among the 421 patients, 204 (48.5%) exhibited poor prognosis. The RF model demonstrated superior performance compared to LR (AUC = 0.850, 95% CI: 0.783-0.918), SVM (AUC = 0.862, 95% CI: 0.799-0.926), and XGBoost (AUC = 0.850, 95% CI: 0.783-0.917) with an AUC of 0.867 (95% CI: 0.806-0 .929). Primary prognostic features identified through SHAP analysis included higher World Federation of Neurosurgical Societies (WFNS) grade, higher modified Fisher score (mFS) and advanced age, were found to be associated with 12-month unfavorable outcome, while the treatment of coiling embolization for aSAH drove the prediction towards favorable prognosis. Additionally, the SHAP force plot visualized individual prognosis predictions. CONCLUSIONS: This study demonstrated the potential of machine learning techniques in prognostic prediction for high-grade aSAH patients. The features identified through SHAP analysis enhance model interpretability and provide guidance for clinical decision-making.


Asunto(s)
Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/diagnóstico , Hemorragia Subaracnoidea/terapia , Pronóstico , Aprendizaje Automático , Modelos Logísticos , Algoritmos
12.
Theranostics ; 14(11): 4481-4498, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113807

RESUMEN

Rationale: Since oncogene expression products often exhibit upregulation or abnormally activated activity, developing a technique to regulate abnormal protein levels represent a viable approach for treating tumors and protein abnormality-related diseases. Methods: We first screened out eMIATAC components with high targeted degradation efficiency and explored the mechanism by which eMIATAC induced target protein degradation, and verified the degradation efficiency of the target protein by protein imprinting and flow cytometry. Next, we recombined eMIATAC with some controllable elements to verify the regulatable degradation performance of the target protein. Subsequently, we constructed eMIATAC that can express targeted degradation of AKT1 and verified its effect on GBM cell development in vitro and in vivo. Finally, we concatenated eMIATAC with CAR sequences to construct CAR-T cells with low BATF protein levels and verified the changes in their anti-tumor efficacy. Results: we developed a system based on the endosome-microautophagy-lysosome pathway for degrading endogenous proteins: endosome-MicroAutophagy TArgeting Chimera (eMIATAC), dependent on Vps4A instead of lysosomal-associated membrane protein 2A (LAMP2A) to bind to the chaperone Hsc70 and the protein of interest (POI). The complex was then transported to the lysosome by late endosomes, where degradation occurred similarly to microautophagy. The eMIATACs demonstrated accuracy, efficiency, reversibility, and controllability in degrading the target protein EGFP. Moreover, eMIATAC exhibited excellent performance in knocking down POI when targeting endogenous proteins in vivo and in vitro. Conclusions: The eMIATACs could not only directly knock down abnormal proteins for glioma treatment but also enhance the therapeutic effect of CAR-T cell therapy for tumors by knocking down T cell exhaustion-related proteins. The newly developed eMIATAC system holds promise as a novel tool for protein knockdown strategies. By enabling direct control over endogenous protein levels, eMIATAC has the potential to revolutionize treatment for cancer and genetic diseases.


Asunto(s)
Autofagia , Endosomas , Inmunoterapia Adoptiva , Proteolisis , Humanos , Animales , Endosomas/metabolismo , Línea Celular Tumoral , Ratones , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Glioblastoma/terapia , Glioblastoma/metabolismo , Glioblastoma/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas del Choque Térmico HSC70/metabolismo , Lisosomas/metabolismo , Linfocitos T/metabolismo
13.
World Neurosurg ; 172: e378-e388, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36657714

RESUMEN

OBJECTIVE: The effect of surgical clipping (SC) and endovascular coiling (EC) on the incidence of delayed cerebral ischemia (DCI) in patients with aneurysmal subarachnoid hemorrhage (aSAH) has always been a controversial topic. Hence, it is necessary to reanalyze the effects of the 2 surgical methods on DCI, which determines the choice of the most favorable method for patients who are suitable for both surgical modalities. METHODS: A multicenter retrospective observational cohort study was performed to evaluate all consecutive patients with aSAH admitted to 5 medical centers in China between April 2019 and June 2021. Univariable and multivariable analyses were used to confirm risk factors of DCI after aSAH. A 1:1 propensity score matching model was generated in the EC and SC groups to reduce the influence of all confounding factors on DCI. RESULTS: A total of 412 patients were included, and 115 patients (27.9%) developed DCI. After propensity score matching for controlling demographic information, past medical history, admission clinical status, aneurysm characteristics, and inflammatory factors associated with DCI, 133 patients with SC and 133 patients with EC treatment were matched. The results of the matched cohorts indicate a significantly lower incidence of DCI when patients received EC than SC (31.9% vs. 20%; adjusted odds ratio, 1.87; 95% confidence interval, 1.08-3.29; P = 0.027). CONCLUSIONS: The study found that the patients who received SC treatment had a higher incidence of DCI than did those who received EC and suggested that ruptured intracerebral aneurysm is preferentially coiled rather than clipped if the aneurysm is suitable for both surgical modalities.


Asunto(s)
Aneurisma Roto , Isquemia Encefálica , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/epidemiología , Hemorragia Subaracnoidea/cirugía , Estudios Retrospectivos , Incidencia , Puntaje de Propensión , Infarto Cerebral/complicaciones , Isquemia Encefálica/etiología , Isquemia Encefálica/complicaciones , Aneurisma Roto/cirugía
14.
Cell Biol Int ; 36(11): 997-1004, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22866675

RESUMEN

Angiogenesis takes place after brain ischaemia, and stroke-induced angiogenesis in ischaemic brain may be associated with improved neurological recovery. Bone MSCs (marrow stromal cells) transplantation can promote this vital angiogenesis in ischaemic zones, but the mechanisms by which MSCs promoting angiogenesis are unclear. The Notch signalling pathway may play an important role in embryonic blood vessels development and tumour angiogenesis, but whether it is also involved in angiogenesis after cerebral ischaemia is uncertain. We therefore investigated the Notch signalling pathway in angiogenesis after stroke. Rats were subjected to MCAo (middle cerebral artery occlusion) and treated intravenously with or without MSCs at 24 h after injury. On day 1, 3 and 7 after treatment with MSCs or PBS, immunofluorescent staining, Western blot and RT-PCR (reverse transcription-PCR) assays were carried out to evaluate angiogenesis, and expression of VEGF (vascular endothelial growth factor) and Notch signals in the ischaemic cortex. Immunofluorescent showed a significant increase in both new microvessels, VEGF-positive cells and Notch1-positive microvessels in the ischaemic cortex in MSCs-treated group. RT-PCR indicated that MSC transplantation significantly raised VEGF mRNA and Hes1 mRNA levels in the ischaemic cortex. The data suggest that treatment with MSCs enhances stroke-induced angiogenesis in ischaemic brain, and that the Notch signalling pathway is involved.


Asunto(s)
Isquemia Encefálica/patología , Corteza Cerebral/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica , Transducción de Señal , Animales , Western Blotting , Isquemia Encefálica/metabolismo , Células Cultivadas , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/patología , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/terapia , Masculino , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor Notch1/genética , Receptor Notch1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/terapia , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Tomography ; 8(6): 2844-2853, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36548530

RESUMEN

Gangliogliomas are uncommon intracranial tumors that include neoplastic and abnormal ganglion cells, and show positive immunohistochemical staining for GFAP and syn. This type of lesion occurs more frequently in the temporal lobe than in other areas; they are extremely rare in the suprasellar region. To the best of our knowledge, including our case, 19 cases of GGs have been found in the suprasellar region. Among them, five tumors invaded the optic nerve, nine tumors invaded the optic chiasm, one tumor invaded the optic tract, and two tumors invaded the entire optic chiasmal hypothalamic pathway. In the present study, we describe the first case of suprasellar GGs arising from the third ventricle floor that was removed through the endoscopic endonasal approach. In addition, we summarize the clinical characteristics of GGs, such as age of onset, gender distribution, MRI signs, main clinical symptoms, and treatment methods for GG cases.


Asunto(s)
Neoplasias Encefálicas , Ganglioglioma , Tercer Ventrículo , Humanos , Ganglioglioma/diagnóstico por imagen , Ganglioglioma/cirugía , Tercer Ventrículo/diagnóstico por imagen , Tercer Ventrículo/patología , Neoplasias Encefálicas/patología
16.
Brain Behav ; 11(12): e2399, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34758200

RESUMEN

BACKGROUND: Dysregulation of microRNAs has been frequently implicated in the progression of human diseases, including glioma. This study aims to explore the interaction between E2F transcription factor 1 (E2F1) and miR-107 in the progression of glioma. METHODS: Expression of miR-107 in glioma tissues and cells was examined. Putative binding sites between E2F1 and the promoter region of miR-107, and between miR-107 and cyclin D1 (CCND1) mRNA were predicted via bioinformatic systems and validated via chromatin immunoprecipitation and luciferase reporter gene assays. Altered expression of miR-107, E2F1, and CCND1 was introduced in A172 and T98G cells to examine their roles in cell growth and the activity of the Wnt/ß-catenin signaling. In vivo experiments were performed by injecting cells in nude mice. RESULTS: miR-107 was poorly expressed, whereas E2F1 and CCND1 were highly expressed in glioma tissues and cells. E2F1 bound to the promoter region of miR-107 to induce transcriptional repression, and miR-107 directly bound to CCND1 mRNA to reduce its expression. Overexpression of miR-107 reduced proliferation, migration and invasion, and augmented apoptosis of glioma cells, and it reduced activity of the Wnt/ß-catenin pathway. The anti-tumorigenic roles of miR-107 were blocked by E2F1 or CCND1 overexpression. Similar results were reproduced in vivo where miR-107 overexpression or E2F1 inhibition blocked tumor growth in nude mice. CONCLUSION: This study suggested that E2F1 reduces miR-107 transcription to induce CCND1 upregulation, which leads to progression of glioma via Wnt/ß-catenin signaling activation.


Asunto(s)
Ciclina D1 , Factores de Transcripción E2F , Glioma , MicroARNs , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Factores de Transcripción E2F/metabolismo , Glioma/genética , Glioma/patología , Humanos , Ratones , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo
17.
World Neurosurg ; 156: e291-e299, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34547527

RESUMEN

OBJECTIVE: Improving the gross total resection (GTR) rate of suprasellar pituitary macroadenomas (SPMAs) using the pure endoscopic endonasal transsphenoidal approach (EETA) has been a long-standing focus of neurosurgeons. This study was aimed at evaluating the influences of the removal of the tuberculum sellae bone (TSB) without opening the dura of the tuberculum sellae on the GTR rate of SPMAs via the EETA. METHODS: We retrospectively analyzed medical reports of patients with SPMAs who underwent EETA between February 2015 and November 2020. Data on clinical manifestations, endocrinologic types, imaging features (Hardy classification, morphology, and texture), clinical outcomes, and TSB removal status were collected. All patients were followed up for 6 months postoperatively. RESULTS: Seventy-eight patients were enrolled in our study. The GTR rates of the TSB removal group (45/78, 57.7%) and nonremoval group (33/78, 42.3%) were 80.0% (36/45) and 57.6% (19/33), respectively. Univariate logistic regression analysis found that the removal of TSB, rounded morphology, and low Hardy classification were correlated with higher GTR rates. Multiple logistic regression analysis indicated that even after adjusting for tumor types and imaging features, the removal of TSB had an independent effect on the GTR rate (odds ratio, 7.6; 95% confidence interval, 1.8-31.6; P = 0.005). The incidence rates of postoperative cerebrospinal fluid leakage and diabetes insipidus were not significantly different between the TSB removal group and TSB nonremoval group. CONCLUSIONS: TSB removal using EETA without opening the tuberculum sellae dura improves the GTR rate of SPMAs without increasing the incidence of postoperative complications.


Asunto(s)
Adenoma/cirugía , Procedimientos Neuroquirúrgicos/métodos , Neoplasias Hipofisarias/cirugía , Silla Turca/cirugía , Adenoma/diagnóstico por imagen , Adulto , Anciano , Pérdida de Líquido Cefalorraquídeo/epidemiología , Diabetes Insípida/epidemiología , Femenino , Humanos , Masculino , Márgenes de Escisión , Persona de Mediana Edad , Cavidad Nasal/cirugía , Cirugía Endoscópica por Orificios Naturales , Neoplasias Hipofisarias/diagnóstico por imagen , Complicaciones Posoperatorias/epidemiología , Estudios Retrospectivos , Silla Turca/diagnóstico por imagen , Resultado del Tratamiento
18.
Aging (Albany NY) ; 13(7): 9911-9926, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33795521

RESUMEN

In this study, we demonstrate that bone mesenchymal stem cell (BMSC)-derived exosomes alter tumor phenotypes by delivering miR-512-5p. miR-512-5p was downregulated in glioblastoma tissues and cells, and Jagged 1 (JAG1) was the target gene of miR-512-5p. We clarified the expression patterns of miR-512-5p and JAG1 along with their interactions in glioblastoma. Additionally, we observed that BMSC-derived exosomes could contain and transport miR-512-5p to glioblastoma cells in vitro. BMSC-derived exosomal miR-512-5p inhibited glioblastoma cell proliferation and induced cell cycle arrest by suppressing JAG1 expression. In vivo assays validated the in vitro findings, with BMSC-exosomal miR-512-5p inhibiting glioblastoma growth and prolonging survival in mice. These results suggest that BMSC-derived exosomes transport miR-512-5p into glioblastoma and slow its progression by targeting JAG1. This study reveals a new molecular mechanism for glioblastoma treatment and validates miRNA packaging into exosomes for glioblastoma cell communication.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Exosomas/metabolismo , Glioblastoma/metabolismo , Proteína Jagged-1/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Animales , Neoplasias Encefálicas/patología , Puntos de Control del Ciclo Celular/fisiología , Proliferación Celular/fisiología , Progresión de la Enfermedad , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Ratones , Ratones Desnudos , Persona de Mediana Edad
19.
Front Mol Biosci ; 8: 587516, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718432

RESUMEN

Lysine acetylation modification, which has key roles in cellular homeostasis as well as cancer malignancy, is dynamically regulated by lysine acetylation regulators (LARs). In our study, we found that most of 33 evaluated LARs were differentially expressed among 1,125 gliomas grouped by different clinicopathological characteristics. Consensus clustering was applied to 33 LARs, resulting in three glioma subtypes (LA1, 2, and 3). The LA3 subgroup was associated with the poorest clinical outcome, higher WHO grade, fewer isocitrate dehydrogenase mutations, and lower frequency of 1p/19q codeletion. Furthermore, gene set enrichment analysis indicated that eight tumor hallmarks were highly enriched in the LA3 subgroup. These results suggested that LARs are significantly related to glioma malignancy. We then designed a LAR-signature based on 14 overall survival (overall survival)-related LARs, and showed that the LAR-signature possesses strong and independent prognostic value for glioma patients in both training and validation datasets. Moreover, by interrogating single nucleotide polymorphism and copy number variation (CNV) data in The Cancer Genome Atlas dataset, we found that higher score of our risk signature is correlated with the hypermutation status of gliomas and that HDAC1(1p) was one of the oncogenes lost in 1p/19q codeletion events, while SIRT2(19q) and EP300(22q) may act as tumor suppressors in gliomas with 19q or 22q deletions, respectively. In conclusion, LARs are critical for the malignant development of gliomas, and our results are useful for prognostic stratification and development of novel assessment strategies for the prognosis of glioma patients.

20.
Am J Cancer Res ; 11(1): 14-30, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33520357

RESUMEN

Macropinocytosis is a form of endocytosis which provides an effective way for non-selective uptakes of extracellular proteins, liquids, and particles. The endocytic process is initiated by the activation of the growth factors signaling pathways. After activation of the biochemical signal, the cell starts internalizing extracellular solutes and nutrients into the irregular endocytic vesicles, known as macropinosomes that deliver them into the lysosomes for degradation. Macropinocytosis plays an important role in the nutritional supply of cancer cells. Due to the rapid expansion of cancer cells and the abnormal vascular microenvironment, cancer cells are usually deprived of oxygen and nutrients. Therefore, they must transform their metabolism to survive and grow in this harsh microenvironment. To satisfy their energy needs, cancer cells enhance the activity of macropinocytosis. Therefore, this metabolic adaptation that is used by cancer cells can be exploited to develop new targeted cancer therapies. In this review, we discuss the molecular mechanism that actuates the process of macropinocytosis in a variety of cancers, and the novel anti-cancer therapeutics in targeting macropinocytosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA