Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38398543

RESUMEN

Monofluoromethyl (CH2F) motifs exhibit unique bioactivities and are considered privileged units in drug discovery. The radical monofluoromethylative difunctionalization of alkenes stands out as an appealing approach to access CH2F-containing compounds. However, this strategy remains largely underdeveloped, particularly under metal-free conditions. In this study, we report on visible light-mediated three-component monofluoromethylation/acylation of styrene derivatives employing NHC and organic photocatalyst dual catalysis. A diverse array of α-aryl-ß-monofluoromethyl ketones was successfully synthesized with excellent functional group tolerance and selectivity. The mild and metal-free CH2F radical generation strategy from NaSO2CFH2 holds potential for further applications in fluoroalkyl radical chemistry.

2.
ACS Omega ; 6(23): 15115-15125, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34151091

RESUMEN

To deeply explore the spontaneous combustion disaster of coal caused by air leakage and oxygen supply, low-temperature coal oxidation experiments under different oxygen concentrations (DOC) were carried out. Within the coal spontaneous combustion characteristic measurement system, a synchronous thermal analyzer (STA) and a Fourier transform infrared spectrometer (FTIR), the macro laws of gas and heat generation under DOC are analyzed, and the mechanism of the development of coal spontaneous combustion restricted by the lean-oxygen environment is also revealed. The results show that the change of oxygen concentration (OC) does not affect the critical temperature value and gas index change trend, but the lean-oxygen environment reduces the gas concentration and heat production rate very obviously. According to the temperature of the intersection, OC needs to be lowered to less than 5% when preventing spontaneous combustion of coal. The chain thermal reaction lags in the lean-oxygen environment, and the pyrolysis activity is significantly reduced. Meanwhile, the temperature points at T 6 and T 7 show significant differences. Furthermore, with increasing OC and temperature, the content of the aliphatic hydrocarbon presents an overall trend of first increasing, then decreasing, and continuously increasing after stage IV. It is concluded that •OH, aliphatic hydrocarbons, aromatic hydrocarbons, and carboxyl groups are the key groups for the coal spontaneous combustion evolution under DOC. To combine the spontaneous combustion reaction of coal in the DOC environment, the reaction path of the index gas in the macroscopic phenomenon and the reason for the concentration differences are revealed, the mechanism for exotherm varies caused by OC is clarified, and the microscopic inhibition affection on the chain reaction within the lean-oxygen environment is also explored. The results put forward the key groups evolution mechanism under the DOC for coal oxidation, which could provide the technical guidance for the fire prevention and control on coal mines.

3.
Environ Sci Pollut Res Int ; 28(40): 57348-57360, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34089454

RESUMEN

After a coal seam is mined, the coal remaining in the goaf is prone to flooding and spontaneous combustion accidents. To explore the reignition (secondary oxidation) characteristics of long-flame coal after oxidation and water immersion, the experimental methods of thermogravimetric analysis and infrared spectroscopy were used to analyze coal samples of oxidation first and then water immersion (FO) and samples of water immersion first and then oxidization (FI) at different pre-oxidation temperatures. The results showed that the content of main oxygen-containing functional groups (hydroxyl, carbonyl, and carboxyl groups) of the FO120 (oxidation 120 °C first and then water immersion) coal sample increased, and the FI 90 (water immersion first and then oxidization 90 °C) coal sample decreased. Pre-oxidation at 120 °C will slow down the decrease in the extent of low-temperature secondary oxidation TG, as the pre-oxidation temperature increases, the total heat release of the FO coal samples first increase and then decrease, and the heat released is high at 120 °C. The FI coal samples transfer active sites during the water immersion process, and the high pre-oxidation temperature leads to the rapid increase of the speed of the primary active site, which leads to the transformation between the secondary active site and the oxygen-containing group, resulting in the cleavage of the oxygen-containing group and increasing the heat production. Water immersion pre-oxidation performed under different conditions has the dual effects of promoting and inhibiting spontaneous coal combustion. This result provides a theoretical basis for preventing spontaneous combustion in coal-mined areas in shallow coal seams after soaking in water.


Asunto(s)
Carbón Mineral , Agua , Inmersión , Oxidación-Reducción , Combustión Espontánea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA