RESUMEN
PURPOSE: We evaluated the diagnostic accuracy of multiparametric magnetic resonance imaging and multiparametric magnetic resonance imaging/transrectal ultrasound fusion guided targeted biopsy against that of transperineal template saturation prostate biopsy to detect prostate cancer. MATERIALS AND METHODS: We retrospectively analyzed the records of 415 men who consecutively presented for prostate biopsy between November 2014 and September 2016 at our tertiary care center. Multiparametric magnetic resonance imaging was performed using a 3 Tesla device without an endorectal coil, followed by transperineal template saturation prostate biopsy with the BiopSee® fusion system. Additional fusion guided targeted biopsy was done in men with a suspicious lesion on multiparametric magnetic resonance imaging, defined as Likert score 3 to 5. Any Gleason pattern 4 or greater was defined as clinically significant prostate cancer. The detection rates of multiparametric magnetic resonance imaging and fusion guided targeted biopsy were compared with the detection rate of transperineal template saturation prostate biopsy using the McNemar test. RESULTS: We obtained a median of 40 (range 30 to 55) and 3 (range 2 to 4) transperineal template saturation prostate biopsy and fusion guided targeted biopsy cores, respectively. Of the 124 patients (29.9%) without a suspicious lesion on multiparametric magnetic resonance imaging 32 (25.8%) were found to have clinically significant prostate cancer on transperineal template saturation prostate biopsy. Of the 291 patients (70.1%) with a Likert score of 3 to 5 clinically significant prostate cancer was detected in 129 (44.3%) by multiparametric magnetic resonance imaging fusion guided targeted biopsy, in 176 (60.5%) by transperineal template saturation prostate biopsy and in 187 (64.3%) by the combined approach. Overall 58 cases (19.9%) of clinically significant prostate cancer would have been missed if fusion guided targeted biopsy had been performed exclusively. The sensitivity of multiparametric magnetic resonance imaging and fusion guided targeted biopsy for clinically significant prostate cancer was 84.6% and 56.7% with a negative likelihood ratio of 0.35 and 0.46, respectively. CONCLUSIONS: Multiparametric magnetic resonance imaging alone should not be performed as a triage test due to a substantial number of false-negative cases with clinically significant prostate cancer. Systematic biopsy outperformed fusion guided targeted biopsy. Therefore, it will remain crucial in the diagnostic pathway of prostate cancer.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Próstata/patología , Neoplasias de la Próstata/diagnóstico , Anciano , Reacciones Falso Negativas , Humanos , Biopsia Guiada por Imagen/métodos , Imagen por Resonancia Magnética/instrumentación , Masculino , Persona de Mediana Edad , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Estudios Retrospectivos , Sensibilidad y Especificidad , Triaje/métodos , Ultrasonografía Intervencional/métodosRESUMEN
Descending monoaminergic inputs markedly influence spinal locomotor circuits, but the functional relationships between specific receptors and the control of walking behavior remain poorly understood. To identify these interactions, we manipulated serotonergic, dopaminergic, and noradrenergic neural pathways pharmacologically during locomotion enabled by electrical spinal cord stimulation in adult spinal rats in vivo. Using advanced neurobiomechanical recordings and multidimensional statistical procedures, we reveal that each monoaminergic receptor modulates a broad but distinct spectrum of kinematic, kinetic, and EMG characteristics, which we expressed into receptor-specific functional maps. We then exploited this catalog of monoaminergic tuning functions to devise optimal pharmacological combinations to encourage locomotion in paralyzed rats. We found that, in most cases, receptor-specific modulatory influences summed near algebraically when stimulating multiple pathways concurrently. Capitalizing on these predictive interactions, we elaborated a multidimensional monoaminergic intervention that restored coordinated hindlimb locomotion with normal levels of weight bearing and partial equilibrium maintenance in spinal rats. These findings provide new perspectives on the functions of and interactions between spinal monoaminergic receptor systems in producing stepping, and define a framework to tailor pharmacotherapies for improving neurological functions after CNS disorders.
Asunto(s)
Conducta Animal/fisiología , Monoaminas Biogénicas/metabolismo , Marcha/fisiología , Locomoción/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Médula Espinal/fisiología , Animales , Femenino , Vías Nerviosas/fisiología , Ratas , Ratas Sprague-DawleyRESUMEN
STUDY OBJECTIVE: Beach chair position is considered a potential risk factor for central neurological events particularly if combined with low blood pressure. The aim of this study was to assess the impact of regional anesthesia on cerebral blood flow and neurobehavioral outcome. DESIGN: This is a prospective, assessor-blinded observational study evaluating patients in the beach chair position undergoing shoulder surgery under regional anesthesia. SETTING: University hospital operating room. PATIENTS: Forty patients with American Society of Anesthesiologists classes I-II physical status scheduled for elective shoulder surgery. INTERVENTIONS: Cerebral saturation and blood flow of the middle cerebral artery were measured prior to anesthesia and continued after beach chair positioning until discharge to the postanesthesia care unit. The anesthesiologist was blinded for these values. Controlled hypotension with systolic blood pressure≤100mm Hg was maintained during surgery. MEASUREMENTS: Neurobehavioral tests and values of regional cerebral saturation, bispectral index, the mean maximal blood flow of the middle cerebral artery, and invasive blood pressure were measured prior to regional anesthesia, and measurements were repeated after placement of the patient on the beach chair position and every 20 minutes thereafter until discharge to postanesthesia care unit. The neurobehavioral tests were repeated the day after surgery. MAIN RESULTS: The incidence of cerebral desaturation events was 5%. All patients had a significant blood pressure drop 5 minutes after beach chair positioning, measured at the heart as well as the acoustic meatus levels, when compared with baseline values (P<.05). There was no decrease in either the regional cerebral saturation (P=.136) or the maximal blood flow of the middle cerebral artery (P=.212) at the same time points. Some neurocognitive tests showed an impairment 24 hours after surgery (P<.001 for 2 of 3 tests). CONCLUSIONS: Beach chair position in patients undergoing regional anesthesia for shoulder surgery had no major impact on cerebral blood flow and cerebral oxygenation. However, some impact on neurobehavioral outcome 24 hours after surgery was observed.