Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomedicines ; 12(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791073

RESUMEN

Macular edema (ME) remains a primary cause of visual deterioration in uveitis. Visual acuity (VA) can often be maintained using corticosteroid depot systems. This study evaluated the efficacy of a fluocinolone acetonide (FAc) intravitreal implant (ILUVIEN®) in treating non-infectious uveitis using real-world data. This retrospective analysis included 135 eyes subdivided into responders and non-responders. Central retinal thickness (CRT), VA, and intraocular pressure (IOP) were followed over time. A significant decrease in CRT and an increase in VA were observed in all eyes throughout the follow-up period (p < 0.01). An IOP increase (p = 0.028) necessitated treatment in 43% of eyes by Month 6. Non-responders were older (p = 0.004) and had been treated with more dexamethasone (DEX) implants (p = 0.04); 89.3% had a defect in the external limiting membrane (ELM) and inner/outer segment (IS/OS) zone (p < 0.001). Immunomodulatory therapy had no impact on treatment response. Pars plana vitrectomy (PPV) patients had a mean CRT reduction of 47.55 µm and a reduced effect by Month 24 (p = 0.046) versus non-PPV patients. We conclude that the FAc implant achieves long-term control of CRT and improves VA. Increases in IOP were manageable. Eyes with a previous PPV showed milder results. Data showed a correlation between older age, a damaged ELM and IS/OS zone, frequent DEX inserts, and poorer outcome measures.

2.
Biomed Opt Express ; 15(1): 142-161, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223169

RESUMEN

In this study, we use synchrotron-based multi-modal X-ray tomography to examine human cerebellar tissue in three dimensions at two levels of spatial resolution (2.3 µm and 11.9 µm). We show that speckle-based imaging (SBI) produces results that are comparable to propagation-based imaging (PBI), a well-established phase-sensitive imaging method. The different SBI signals provide complementary information, which improves tissue differentiation. In particular, the dark-field signal aids in distinguishing tissues with similar average electron density but different microstructural variations. The setup's high resolution and the imaging technique's excellent phase sensitivity enabled the identification of different cellular layers and additionally, different cell types within these layers. We also correlated this high-resolution phase-contrast information with measured dark-field signal levels. These findings demonstrate the viability of SBI and the potential benefit of the dark-field modality for virtual histology of brain tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA