Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 345: 118664, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499418

RESUMEN

Diffuse nitrogen losses from agriculture in Germany continue to cause regionally increased nitrate concentrations in groundwater. Groundwater quality monitoring cannot be a timely indicator of the effects of mitigation measures being applied in agriculture, due to frequently long transport routes and high residence times of the leachate. Instead, nitrate leaching potential is often determined at field and farm scale by monitoring soil mineral nitrogen contents at 0-90 cm depth in autumn (SMNa), i.e. before the start of the annual leachate period. In this study, we developed an understanding of the controls on the soil mineral nitrogen content at the start of winter. In an on-farm approach, extensive data was collected from 48 farms in five nitrate-sensitive regions in Germany from 2017 to 2020. From this data set, 25 management and site factors were evaluated with regard to their significance for SMNa by means of a random forest model. With the random forest regression, we identified the role of the factors on SMNa with an acceptable model accuracy with R2 = 0.56. The results show that the cultivated crop is the most important factor influencing SMNa. Potatoes, oilseed rape and maize produced the highest SMNas, whereas SMNas were lowest after spring barley, sugar beet and winter barley. Among site factors, soil type and texture as well as precipitation in October were most decisive. The effects of N fertilisation parameters such as rate and timing were masked by these site factors. The results show that the reduction of nitrogen-intensive crops in crop sequences can be a promising measure for the reduction of nitrate loads. On the other hand, our analysis makes clear that soil-related factors controlling nitrogen release and risk of leaching, as well as weather, can significantly mask the effect of cultivation.


Asunto(s)
Agricultura , Nitratos , Nitratos/análisis , Agricultura/métodos , Suelo , Alemania , Nitrógeno/análisis , Fertilizantes/análisis
2.
New Phytol ; 229(5): 2611-2624, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33128821

RESUMEN

Nutrient imbalances cause the deterioration of tree health in European forests, but the underlying physiological mechanisms are unknown. Here, we investigated the consequences of decreasing root carbohydrate reserves for phosphorus (P) mobilisation and uptake by forest trees. In P-rich and P-poor beech (Fagus sylvatica) forests, naturally grown, young trees were girdled and used to determine root, ectomycorrhizal and microbial activities related to P mobilisation in the organic layer and mineral topsoil in comparison with those in nongirdled trees. After girdling, root carbohydrate reserves decreased. Root phosphoenolpyruvate carboxylase activities linking carbon and P metabolism increased. Root and ectomycorrhizal phosphatase activities and the abundances of bacterial genes catalysing major steps in P turnover increased, but soil enzymes involved in P mobilisation were unaffected. The physiological responses to girdling were stronger in P-poor than in P-rich forests. P uptake was decreased after girdling. The soluble and total P concentrations in roots were stable, but fine root biomass declined after girdling. Our results support that carbohydrate depletion results in reduced P uptake, enhanced internal P remobilisation and root biomass trade-off to compensate for the P shortage. As reductions in root biomass render trees more susceptible to drought, our results link tree deterioration with disturbances in the P supply as a consequence of decreased belowground carbohydrate allocation.


Asunto(s)
Fagus , Árboles , Carbohidratos , Bosques , Fósforo , Raíces de Plantas
3.
New Phytol ; 226(2): 583-594, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31868933

RESUMEN

Root exudation is a key plant function with a large influence on soil organic matter dynamics and plant-soil feedbacks in forest ecosystems. Yet despite its importance, the main ecological drivers of root exudation in mature forest trees remain to be identified. During two growing seasons, we analyzed the dependence of in situ collected root exudates on root morphology, soil chemistry and nutrient availability in six mature European beech (Fagus sylvatica L.) forests on a broad range of bedrock types. Root morphology was a major driver of root exudation across the nutrient availability gradient. A doubling of specific root length exponentially increased exudation rates of mature trees by c. 5-fold. Root exudation was also closely negatively related to soil pH and nitrogen (N) availability. At acidic and N-poor sites, where fungal biomass was reduced, exudation rates were c. 3-fold higher than at N- and base-richer sites and correlated negatively with the activity of enzymes degrading less bioavailable carbon (C) and N in the bulk soil. We conclude that root exudation increases on highly acidic, N-poor soils, in which fungal activity is reduced and a greater portion of the assimilated plant C is shifted to the external ecosystem C cycle.


Asunto(s)
Fagus , Ecosistema , Bosques , Nutrientes , Raíces de Plantas , Suelo , Árboles
4.
Glob Chang Biol ; 26(3): 1926-1935, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31774225

RESUMEN

Dark, that is, nonphototrophic, microbial CO2 fixation occurs in a large range of soils. However, it is still not known whether dark microbial CO2 fixation substantially contributes to the C balance of soils and what factors control this process. Therefore, the objective of this study was to quantitate dark microbial CO2 fixation in temperate forest soils, to determine the relationship between the soil CO2 concentration and dark microbial CO2 fixation, and to estimate the relative contribution of different microbial groups to dark CO2 fixation. For this purpose, we conducted a 13 C-CO2 labeling experiment. We found that the rates of dark microbial CO2 fixation were positively correlated with the CO2 concentration in all soils. Dark microbial CO2 fixation amounted to up to 320 µg C kg-1  soil day-1 in the Ah horizon. The fixation rates were 2.8-8.9 times higher in the Ah horizon than in the Bw1 horizon. Although the rates of dark microbial fixation were small compared to the respiration rate (1.2%-3.9% of the respiration rate), our findings suggest that organic matter formed by microorganisms from CO2 contributes to the soil organic matter pool, especially given that microbial detritus is more stable in soil than plant detritus. Phospholipid fatty acid analyses indicated that CO2 was mostly fixed by gram-positive bacteria, and not by fungi. In conclusion, our study shows that the dark microbial CO2 fixation rate in temperate forest soils increases in periods of high CO2 concentrations, that dark microbial CO2 fixation is mostly accomplished by gram-positive bacteria, and that dark microbial CO2 fixation contributes to the formation of soil organic matter.


Asunto(s)
Dióxido de Carbono , Suelo , Carbono , Bosques , Hongos , Microbiología del Suelo
5.
Proc Natl Acad Sci U S A ; 112(11): E1392-400, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646482

RESUMEN

Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: "What regulates flux through this pathway in vivo?" Previous proteomic experiments with Arabidopsis discussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway in Arabidopsis: the NADP-TRX reductase a and b double mutant (ntra ntrb) and the mitochondrially located thioredoxin o1 (trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when (13)C-glucose, (13)C-malate, or (13)C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function.


Asunto(s)
Ciclo del Ácido Cítrico , Mitocondrias/metabolismo , Tiorredoxinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Isótopos de Carbono , Citratos/metabolismo , Genes de Plantas , Prueba de Complementación Genética , Metabolómica , Modelos Biológicos , Mutación/genética , Hojas de la Planta/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plastidios/metabolismo , Reproducibilidad de los Resultados , Semillas/crecimiento & desarrollo , Semillas/metabolismo
6.
PLoS One ; 12(7): e0180264, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28704438

RESUMEN

Soil food web structure and function is primarily determined by the major basal resources, which are living plant tissue, root exudates and dead organic matter. A field experiment was performed to disentangle the interlinkage of the root-and detritus-based soil food chains. An arable site was cropped either with maize, amended with maize shoot litter or remained bare soil, representing food webs depending on roots, aboveground litter and soil organic matter as predominant resource, respectively. The soil micro-food web, i.e. microorganisms and nematodes, was investigated in two successive years along a depth transect. The community composition of nematodes was used as model to determine the changes in the rhizosphere, detritusphere and bulk soil food web. In the first growing season the impact of treatments on the soil micro-food web was minor. In the second year plant-feeding nematodes increased under maize, whereas after harvest the Channel Index assigned promotion of the detritivore food chain, reflecting decomposition of root residues. The amendment with litter did not foster microorganisms, instead biomass of Gram-positive and Gram-negative bacteria as well as that of fungi declined in the rooted zone. Likely higher grazing pressure by nematodes reduced microbial standing crop as bacterial and fungal feeders increased. However, populations at higher trophic levels were not promoted, indicating limited flux of litter resources along the food chain. After two years of bare soil microbial biomass and nematode density remained stable, pointing to soil organic matter-based resources that allow bridging periods with deprivation. Nematode communities were dominated by opportunistic taxa that are competitive at moderate resource supply. In sum, removal of plants from the system had less severe effects than expected, suggesting considerable food web resilience to the disruption of both the root and detrital carbon channel, pointing to a legacy of organic matter resources in arable soils.


Asunto(s)
Bacterias/crecimiento & desarrollo , Hongos/crecimiento & desarrollo , Nematodos/crecimiento & desarrollo , Suelo/química , Animales , Bacterias/clasificación , Ecosistema , Conducta Alimentaria , Cadena Alimentaria , Hongos/clasificación , Nematodos/clasificación , Rizosfera , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA