Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Genet ; 13(6): e1006863, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28665995

RESUMEN

Transcriptome studies on eukaryotic cells have revealed an unexpected abundance and diversity of noncoding RNAs synthesized by RNA polymerase II (Pol II), some of which influence the expression of protein-coding genes. Yet, much less is known about biogenesis of Pol II non-coding RNA than mRNAs. In the budding yeast Saccharomyces cerevisiae, initiation of non-coding transcripts by Pol II appears to be similar to that of mRNAs, but a distinct pathway is utilized for termination of most non-coding RNAs: the Sen1-dependent or "NNS" pathway. Here, we examine the effect on the S. cerevisiae transcriptome of conditional mutations in the genes encoding six different essential proteins that influence Sen1-dependent termination: Sen1, Nrd1, Nab3, Ssu72, Rpb11, and Hrp1. We observe surprisingly diverse effects on transcript abundance for the different proteins that cannot be explained simply by differing severity of the mutations. Rather, we infer from our results that termination of Pol II transcription of non-coding RNA genes is subject to complex combinatorial control that likely involves proteins beyond those studied here. Furthermore, we identify new targets and functions of Sen1-dependent termination, including a role in repression of meiotic genes in vegetative cells. In combination with other recent whole-genome studies on termination of non-coding RNAs, our results provide promising directions for further investigation.


Asunto(s)
ADN Helicasas/genética , ARN Helicasas/genética , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Terminación de la Transcripción Genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Meiosis/genética , Proteínas Mutantes/genética , Proteínas Nucleares/genética , Fosfoproteínas Fosfatasas/genética , ARN no Traducido/genética , Proteínas de Unión al ARN/genética , Transducción de Señal , Transcriptoma/genética , Factores de Escisión y Poliadenilación de ARNm/genética
2.
PLoS Genet ; 5(12): e1000755, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19997491

RESUMEN

The origin recognition complex (ORC) marks chromosomal sites as replication origins and is essential for replication initiation. In yeast, ORC also binds to DNA elements called silencers, where its primary function is to recruit silent information regulator (SIR) proteins to establish transcriptional silencing. Indeed, silencers function poorly as chromosomal origins. Several genetic, molecular, and biochemical studies of HMR-E have led to a model proposing that when ORC becomes limiting in the cell (such as in the orc2-1 mutant) only sites that bind ORC tightly (such as HMR-E) remain fully occupied by ORC, while lower affinity sites, including many origins, lose ORC occupancy. Since HMR-E possessed a unique non-replication function, we reasoned that other tight sites might reveal novel functions for ORC on chromosomes. Therefore, we comprehensively determined ORC "affinity" genome-wide by performing an ORC ChIP-on-chip in ORC2 and orc2-1 strains. Here we describe a novel group of orc2-1-resistant ORC-interacting chromosomal sites (ORF-ORC sites) that did not function as replication origins or silencers. Instead, ORF-ORC sites were comprised of protein-coding regions of highly transcribed metabolic genes. In contrast to the ORC-silencer paradigm, transcriptional activation promoted ORC association with these genes. Remarkably, ORF-ORC genes were enriched in proximity to origins of replication and, in several instances, were transcriptionally regulated by these origins. Taken together, these results suggest a surprising connection among ORC, replication origins, and cellular metabolism.


Asunto(s)
Redes y Vías Metabólicas/genética , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , Cromosomas Fúngicos/genética , Regulación Fúngica de la Expresión Génica , Sistemas de Lectura Abierta/genética , Unión Proteica , Reproducibilidad de los Resultados , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Elementos Silenciadores Transcripcionales/genética , Transcripción Genética
3.
Mol Cell Biol ; 24(2): 774-86, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14701749

RESUMEN

Sir1p is one of four SIR (silent information regulator) proteins required for silencing the cryptic mating-type locus HMRa in the budding yeast Saccharomyces cerevisiae. A Sir1p interaction with Orc1p, the largest subunit of the origin recognition complex (ORC), is critical for Sir1p's ability to bind HMRa and function in the formation of silent chromatin. Here we show that a discrete domain within Sir1p, the ORC interaction region (OIR), was necessary and sufficient for a Sir1p-ORC interaction. The OIR contains the originally defined silencer recognition-defective region as well as additional amino acids. In addition, a Sir1p-Sir4p interaction required a larger region of Sir1p that included the OIR. Amino acid substitutions causing defects in either a Sir1p-Orc1p or a Sir1p-Sir4p interaction reduced HMRa silencing and Sir1p binding to HMRa in chromatin. These data support a model in which Sir1p's association with HMRa is mediated by separable Sir1p-ORC and Sir1p-Sir4p interactions requiring a common Sir1p domain, and they indicate that a Sir1p-ORC interaction is restricted to silencers, at least in part, through interactions with Sir4p.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Cromatina/genética , Cromatina/metabolismo , Secuencia Conservada , Proteínas Fúngicas/genética , Silenciador del Gen , Genes Fúngicos , Genes del Tipo Sexual de los Hongos , Modelos Biológicos , Datos de Secuencia Molecular , Complejo de Reconocimiento del Origen , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos , Levaduras/genética
4.
Genetics ; 198(2): 577-90, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25116135

RESUMEN

The nuclear RNA and DNA helicase Sen1 is essential in the yeast Saccharomyces cerevisiae and is required for efficient termination of RNA polymerase II transcription of many short noncoding RNA genes. However, the mechanism of Sen1 function is not understood. We created a plasmid-based genetic system to study yeast Sen1 in vivo. Using this system, we show that (1) the minimal essential region of Sen1 corresponds to the helicase domain and one of two flanking nuclear localization sequences; (2) a previously isolated terminator readthrough mutation in the Sen1 helicase domain, E1597K, is rescued by a second mutation designed to restore a salt bridge within the first RecA domain; and (3) the human ortholog of yeast Sen1, Senataxin, cannot functionally replace Sen1 in yeast. Guided by sequence homology between the conserved helicase domains of Sen1 and Senataxin, we tested the effects of 13 missense mutations that cosegregate with the inherited disorder ataxia with oculomotor apraxia type 2 on Sen1 function. Ten of the disease mutations resulted in transcription readthrough of at least one of three Sen1-dependent termination elements tested. Our genetic system will facilitate the further investigation of structure-function relationships in yeast Sen1 and its orthologs.


Asunto(s)
Ataxia Cerebelosa/genética , ADN Helicasas/genética , ARN Helicasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transporte Activo de Núcleo Celular , Dominio Catalítico , ADN Helicasas/metabolismo , Humanos , Viabilidad Microbiana , Enzimas Multifuncionales , Mutación Missense , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Terminación de la Transcripción Genética
5.
Mol Cell Biol ; 29(3): 687-702, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19029247

RESUMEN

The yeast Sir1 protein's ability to bind and silence the cryptic mating-type locus HMRa requires a protein-protein interaction between Sir1 and the origin recognition complex (ORC). A domain within the C-terminal half of Sir1, the Sir1 ORC interaction region (Sir1OIR), and the conserved bromo-adjacent homology (BAH) domain within Orc1, the largest subunit of ORC, mediate this interaction. The structure of the Sir1OIR-Orc1BAH complex is known. Sir1OIR and Orc1BAH interacted with a high affinity in vitro, but the Sir1OIR did not inhibit Sir1-dependent silencing when overproduced in vivo, suggesting that other regions of Sir1 helped it bind HMRa. Comparisons of diverged Sir1 proteins revealed two highly conserved regions, N1 and N2, within Sir1's poorly characterized N-terminal half. An N-terminal portion of Sir1 (residues 27 to 149 [Sir1(27-149)]) is similar in sequence to the Sir1OIR; homology modeling predicted a structure for Sir1(27-149) in which N1 formed a submodule similar to the known Orc1BAH-interacting surface on Sir1. Consistent with these findings, two-hybrid assays indicated that the Sir1 N terminus could interact with BAH domains. Amino acid substitutions within or near N1 or N2 reduced full-length Sir1's ability to bind and silence HMRa and to interact with Orc1BAH in a two-hybrid assay. Purified recombinant Sir1 formed a large protease-resistant structure within which the Sir1OIR domain was protected, and Orc1BAH bound Sir1OIR more efficiently than full-length Sir1 in vitro. Thus, the Sir1 N terminus exhibited both positive and negative roles in the formation of a Sir1-ORC silencing complex. This functional duality might contribute to Sir1's selectivity for silencer-bound ORCs in vivo.


Asunto(s)
Secuencia Conservada , Heterocromatina/metabolismo , Modelos Moleculares , Filogenia , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Homología Estructural de Proteína , Alelos , Secuencia de Aminoácidos , Silenciador del Gen , Datos de Secuencia Molecular , Complejo de Reconocimiento del Origen/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Elementos Silenciadores Transcripcionales/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
6.
Mol Biol Cell ; 19(2): 608-22, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18045995

RESUMEN

Silencing of the mating-type locus HMR in Saccharomyces cerevisiae requires DNA elements called silencers. To establish HMR silencing, the origin recognition complex binds the HMR-E silencer and recruits the silent information regulator (Sir)1 protein. Sir1 in turn helps establish silencing by stabilizing binding of the other Sir proteins, Sir2-4. However, silencing is semistable even in sir1Delta cells, indicating that SIR1-independent establishment mechanisms exist. Furthermore, the requirement for SIR1 in silencing a sensitized version of HMR can be bypassed by high-copy expression of FKH1 (FKH1(hc)), a conserved forkhead transcription factor, or by deletion of the S phase cyclin CLB5 (clb5Delta). FKH1(hc) caused only a modest increase in Fkh1 levels but effectively reestablished Sir2-4 chromatin at HMR as determined by Sir3-directed chromatin immunoprecipitation. In addition, FKH1(hc) prolonged the cell cycle in a manner distinct from deletion of its close paralogue FKH2, and it created a cell cycle phenotype more reminiscent to that caused by a clb5Delta. Unexpectedly, and in contrast to SIR1, both FKH1(hc) and clb5Delta established silencing at HMR using the replication origins, ARS1 or ARSH4, as complete substitutes for HMR-E (HMRDeltaE::ARS). HMRDeltaE::ARS1 was a robust origin in CLB5 cells. However, initiation by HMRDeltaE::ARS1 was reduced by clb5Delta or FKH1(hc), whereas ARS1 at its native locus was unaffected. The CLB5-sensitivity of HMRDeltaE::ARS1 did not result from formation of Sir2-4 chromatin because sir2Delta did not rescue origin firing in clb5Delta cells. These and other data supported a model in which FKH1 and CLB5 modulated Sir2-4 chromatin and late-origin firing through opposing regulation of a common pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Factores de Transcripción Forkhead/metabolismo , Origen de Réplica/genética , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Elementos Silenciadores Transcripcionales/genética , Catálisis , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Genes Fúngicos , Genotipo , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Supresión Genética
7.
Genes Dev ; 17(15): 1817-22, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12897051

RESUMEN

The origin recognition complex (ORC) marks chromosomal positions as replication origins and is essential for replication initiation. At a few loci, the ORC functions in heterochromatin formation. We show that the ORC's two roles at the heterochromatic HMRa locus in Saccharomyces cerevisiae were regulated by differences in the ORC's interaction with its target site. At HMRa, a strong ORC-DNA interaction inhibited and delayed replication initiation but promoted heterochromatin formation, whereas a weak ORC-DNA interaction allowed for increased and earlier replication initiation but reduced heterochromatin formation. Therefore, the ORC's interaction with its target site could modulate ORC activity within a heterochromatin domain in vivo.


Asunto(s)
ADN/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Secuencia de Bases , Sitios de Unión , Proteínas de Unión al ADN , Silenciador del Gen , Datos de Secuencia Molecular , Complejo de Reconocimiento del Origen , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA