Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Pharmacol ; 63(4): 725-32, 2002 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-11992641

RESUMEN

Matrix metalloproteinases (MMPs) have recently become interesting as potential anticancer drugs. RO-28-2653 is a promising compound because of its antimetastatic and antiangiogenic activities. Due to the structural similarity of RO-28-2653 to mitochondriotoxic agents, speculation has arisen that this substance might impair mitochondrial function. We, therefore, investigated the effects of RO-28-2653 on mitochondrial enzymes and on the functional properties of isolated mitochondria and skinned muscle fibers from rat hearts. Results were compared to the action of amytal and 2,4-dinitrophenol (2,4-DNP), both of which are well documented mitochondriotoxic compounds. In contrast to 2,4-DNP, RO-28-2653 did not uncouple oxidative phosphorylation, although higher concentrations of the compound did impair mitochondrial function. Using malate/pyruvate as substrate, 50 microM of RO-28-2653 inhibited mitochondrial respiration in isolated mitochondria and skinned fibers by 23 and 11%, respectively while 2mM of amytal elicited almost complete inhibition of the mitochondrial respiration. RO-28-2653 (50 micro) inhibited succinate-dependent respiration in both systems by 43 and 24%, respectively while 2mM of amytal caused 41 and 23% inhibition, respectively. There was no change in the ADP/O ratios. RO-28-2653 (50 microM) did not significantly alter the activity of the respiratory chain complexes or succinate dehydrogenase, although citrate synthase (CS) was inhibited by upto 71%. This inhibition was non-competitive at a K(i) of 25+/-5 microM. Inhibitory effects in the presence of hydrophobic substances, such as BSA and Triton X-100, were significantly lower in both test systems. In conclusion, high concentrations of RO-28-2653 impair mitochondrial function, although compared to amytal and 2,4-DNP, this is rather low. The resultant impairment is less pronounced in the more complex skinned muscle fiber system, and is dependent on hydrophobic interactions.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Metaloproteinasas de la Matriz/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Piperazinas/farmacología , Pirimidinas/farmacología , Animales , Masculino , Inhibidores de la Metaloproteinasa de la Matriz , Mitocondrias Cardíacas/enzimología , Ratas , Ratas Wistar , Respiración/efectos de los fármacos
2.
J Pharmacol Toxicol Methods ; 50(1): 25-34, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15233964

RESUMEN

INTRODUCTION: Given that bisphosphonates reduce bone turnover, it is important to establish that their long-term administration does not impair bone quality. This paper describes a new model for simulation of fracture repair to evaluate several aspects of bone quality following long-term administration (34 or 36 weeks) of ibandronate in full-grown beagle dogs. METHODS: The treatment schedule consisted of continuous daily subcutaneous administration of a pharmacologically active dose (1 microg/kg/day) and two cyclical intermittent regimens providing a similar total dose per animal at the end of the experiment. Seven or 8 weeks before study end, 10 holes were drilled in the left tibia and bone marrow ablation was performed in the ipsilateral femur. Serial measurements for blood biochemistry (osteocalcin and iso-alkaline phosphatase) and bone mineral density (BMD; whole body and L1-L7) by dual-energy X-ray absorptiometry (DEXA) were performed during the experiment. Bone quality was determined at the end of the experiment by assessing early and late stage defect healing and structural, cellular, and dynamic histomorphometry (femur, tibia, and lumbar vertebrae L3 and L4). RESULTS: Healing of the drill hole defects, which simulate the first stage of fracture healing, was neither qualitatively nor quantitatively influenced by ibandronate. The same was true for the activation of cortical remodeling that occurs in the later stage of fracture healing, which started in Week 4 after surgery and declined after Week 8 in all groups. Additionally, no difference was found between the various regimens and the controls with respect to DEXA analyses, trabecular bone volume, cancellous bone tissue area, cancellous bone perimeter, osteoclast count, serum osteocalcin, or bone-specific alkaline phosphatase. DISCUSSION: In conclusion, the presence of the first and second steps of fracture healing and the fact that the histological features closely resemble those of fracture repair validate the development and characterization of a new model for simulation of fracture repair. A long-term study with a therapeutically active dose of ibandronate shows that ibandronate does not impair BMD, bone structure, bone repair, coupling, and serum parameters for bone formation and turnover after long-term administration.


Asunto(s)
Resorción Ósea/tratamiento farmacológico , Difosfonatos/uso terapéutico , Curación de Fractura/efectos de los fármacos , Absorciometría de Fotón , Fosfatasa Alcalina/sangre , Animales , Densidad Ósea/efectos de los fármacos , Resorción Ósea/sangre , Huesos/efectos de los fármacos , Huesos/metabolismo , Modelos Animales de Enfermedad , Perros , Femenino , Colorantes Fluorescentes , Ácido Ibandrónico , Masculino , Osteocalcina/sangre , Osteoporosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA