Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Cell Sci ; 136(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36995025

RESUMEN

Switching genes on and off on cue is a cornerstone for understanding gene functions. One contemporary approach for loss-of-function studies of essential genes involves CRISPR-mediated knockout of the endogenous locus in conjunction with the expression of a rescue construct, which can subsequently be turned off to produce a gene inactivation effect in mammalian cell lines. A broadening of this approach would involve simultaneously switching on a second construct to interrogate the functions of a gene in the pathway. In this study, we developed a pair of switches that were independently controlled by both inducible promoters and degrons, enabling the toggling between two constructs with comparable kinetics and tightness. The gene-OFF switch was based on TRE transcriptional control coupled with auxin-induced degron-mediated proteolysis. A second independently controlled gene-ON switch was based on a modified ecdysone promoter and mutated FKBP12-derived destabilization domain degron, allowing acute and tuneable gene activation. This platform facilitates efficient generation of knockout cell lines containing a two-gene switch that is regulated tightly and can be flipped within a fraction of the time of a cell cycle.


Asunto(s)
Regulación de la Expresión Génica , Ácidos Indolacéticos , Animales , Línea Celular , Ácidos Indolacéticos/farmacología , Proteolisis , Regiones Promotoras Genéticas/genética , Mamíferos/metabolismo
2.
J Biol Chem ; 299(3): 102957, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36717077

RESUMEN

Cyclin A and CDC25A are both activators of cyclin-dependent kinases (CDKs): cyclin A acts as an activating subunit of CDKs and CDC25A a phosphatase of the inhibitory phosphorylation sites of the CDKs. In this study, we uncovered an inverse relationship between the two CDK activators. As cyclin A is an essential gene, we generated a conditional silencing cell line using a combination of CRISPR-Cas9 and degron-tagged cyclin A. Destruction of cyclin A promoted an acute accumulation of CDC25A. The increase of CDC25A after cyclin A depletion occurred throughout the cell cycle and was independent on cell cycle delay caused by cyclin A deficiency. Moreover, we determined that the inverse relationship with cyclin A was specific for CDC25A and not for other CDC25 family members or kinases that regulate the same sites in CDKs. Unexpectedly, the upregulation of CDC25A was mainly caused by an increase in transcriptional activity instead of a change in the stability of the protein. Reversing the accumulation of CDC25A severely delayed G2-M in cyclin A-depleted cells. Taken together, these data provide evidence of a compensatory mechanism involving CDC25A that ensures timely mitotic entry at different levels of cyclin A.


Asunto(s)
Ciclina A , Quinasas Ciclina-Dependientes , Fosfatasas cdc25 , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Ciclo Celular , División Celular , Ciclina A/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Fosforilación
3.
Hepatology ; 78(5): 1368-1383, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36632999

RESUMEN

BACKGROUND AND AIMS: Understanding the mechanisms of HCC progression and metastasis is crucial to improve early diagnosis and treatment. This study aimed to identify key molecular targets involved in HCC metastasis. APPROACH AND RESULTS: Using whole-transcriptome sequencing of patients' HCCs, we identified and validated midline 1 interacting protein 1 (MID1IP1) as one of the most significantly upregulated genes in metastatic HCCs, suggesting its potential role in HCC metastasis. Clinicopathological correlation demonstrated that MID1IP1 upregulation significantly correlated with more aggressive tumor phenotypes and poorer patient overall survival rates. Functionally, overexpression of MID1IP1 significantly promoted the migratory and invasive abilities and enhanced the sphere-forming ability and expression of cancer stemness-related genes of HCC cells, whereas its stable knockdown abrogated these effects. Perturbation of MID1IP1 led to significant tumor shrinkage and reduced pulmonary metastases in an orthotopic liver injection mouse model and reduced pulmonary metastases in a tail-vein injection model in vivo . Mechanistically, SP1 transcriptional factor was found to be an upstream driver of MID1IP1 transcription. Furthermore, transcriptomic sequencing on MID1IP1-overexpressing HCC cells identified FOS-like 1 (FRA1) as a critical downstream mediator of MID1IP1. MID1IP1 upregulated FRA1 to subsequently promote its transcriptional activity and extracellular matrix degradation activity of matrix metalloproteinase MMP9, while knockdown of FRA1 effectively abolished the MID1IP1-induced migratory and invasive abilities. CONCLUSIONS: Our study identified MID1IP1 as a regulator in promoting FRA1-mediated-MMP9 signaling and demonstrated its role in HCC metastasis. Targeting MID1IP1-mediated FRA1 pathway may serve as a potential therapeutic strategy against HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Metaloproteinasa 9 de la Matriz/metabolismo , Metástasis de la Neoplasia , Transducción de Señal/genética
4.
Gut ; 72(7): 1370-1384, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36631249

RESUMEN

OBJECTIVE: Growing evidence indicates that tumour cells exhibit characteristics similar to their lineage progenitor cells. We found that S100 calcium binding protein A10 (S100A10) exhibited an expression pattern similar to that of liver progenitor genes. However, the role of S100A10 in hepatocellular carcinoma (HCC) progression is unclear. Furthermore, extracellular vesicles (EVs) are critical mediators of tumourigenesis and metastasis, but the extracellular functions of S100A10, particularly those related to EVs (EV-S100A10), are unknown. DESIGN: The functions and mechanisms of S100A10 and EV-S100A10 in HCC progression were investigated in vitro and in vivo. Neutralising antibody (NA) to S100A10 was used to evaluate the significance of EV-S100A10. RESULTS: Functionally, S100A10 promoted HCC initiation, self-renewal, chemoresistance and metastasis in vitro and in vivo. Of significance, we found that S100A10 was secreted by HCC cells into EVs both in vitro and in the plasma of patients with HCC. S100A10-enriched EVs enhanced the stemness and metastatic ability of HCC cells, upregulated epidermal growth factor receptor (EGFR), AKT and ERK signalling, and promoted epithelial-mesenchymal transition. EV-S100A10 also functioned as a chemoattractant in HCC cell motility. Of significance, S100A10 governed the protein cargos in EVs and mediated the binding of MMP2, fibronectin and EGF to EV membranes through physical binding with integrin αⅤ. Importantly, blockage of EV-S100A10 with S100A10-NA significantly abrogated these enhancing effects. CONCLUSION: Altogether, our results uncovered that S100A10 promotes HCC progression significantly via its transfer in EVs and regulating the protein cargoes of EVs. EV-S100A10 may be a potential therapeutic target and biomarker for HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Vesículas Extracelulares/metabolismo , Comunicación Celular
5.
Clin Infect Dis ; 76(3): e801-e809, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35594553

RESUMEN

BACKGROUND: This study investigated the effect of nucleos(t)ide analogue (NUC) treatment on hepatitis B virus (HBV) DNA integration and hepatocyte clonal expansion, both of which are implicated in hepatocellular carcinoma (HCC) in chronic hepatitis B. METHODS: Twenty-eight patients receiving NUCs (11 lamivudine, 7 telbivudine, 10 entecavir) were included. All had liver biopsies at baseline and year 1, and 7 had a third biopsy at year 10. HBV DNA integration and hepatocyte clone size were assessed by inverse polymerase chain reaction. RESULTS: All patients had detectable HBV integration at baseline, with a median integration frequency of 1.01 × 109 per liver and hepatocyte clone size of 2.41 × 105. Neither integration frequency nor hepatocyte clone size correlated with age and HBV virologic parameters. After 1 year of treatment, HBV integration was still detectable in all patients, with a median of 5.74 × 108 integration per liver (0.22 log reduction; P = .008) and hepatocyte clone size of 1.22 × 105 (0.40 log reduction; P = .002). HBV integration remained detectable at year 10 of treatment, with a median integration frequency of 4.84 × 107 integration per liver (0.93 log reduction from baseline) and hepatocyte clone size of 2.55 × 104 (1.02 log reduction from baseline). From baseline through year 1 to year 10, there was a decreasing trend in both integration frequency and hepatocyte clone size (P = .066 and.018, respectively). CONCLUSIONS: NUCs reduced both HBV DNA integration and hepatocyte clonal expansion, suggesting another alternative pathway besides direct viral suppression to reduce HCC risk. Our findings supported the notion for a long-term NUC treatment to prevent HCC.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Hepatitis B , Neoplasias Hepáticas , Humanos , Virus de la Hepatitis B/genética , Antivirales/uso terapéutico , Antivirales/farmacología , ADN Viral/genética , Hepatitis B Crónica/tratamiento farmacológico , Hepatocitos/química , Integración Viral , Hepatitis B/tratamiento farmacológico
6.
Mol Cell ; 60(1): 163-76, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26344098

RESUMEN

Human Timeless helps stabilize replication forks during normal DNA replication and plays a critical role in activation of the S phase checkpoint and proper establishment of sister chromatid cohesion. However, it remains elusive whether Timeless is involved in the repair of damaged DNA. Here, we identify that Timeless physically interacts with PARP-1 independent of poly(ADP-ribosyl)ation. We present high-resolution crystal structures of Timeless PAB (PARP-1-binding domain) in free form and in complex with PARP-1 catalytic domain. Interestingly, Timeless PAB domain specifically recognizes PARP-1, but not PARP-2 or PARP-3. Timeless-PARP-1 interaction does not interfere with PARP-1 enzymatic activity. We demonstrate that rapid and transient accumulation of Timeless at laser-induced DNA damage sites requires PARP-1, but not poly(ADP-ribosyl)ation and that Timeless is co-trapped with PARP-1 at DNA lesions upon PARP inhibition. Furthermore, we show that Timeless and PARP-1 interaction is required for efficient homologous recombination repair.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Reparación del ADN por Recombinación , Sitios de Unión , Cristalografía por Rayos X , Roturas del ADN de Doble Cadena , Células HeLa , Recombinación Homóloga , Humanos , Modelos Moleculares , Poli(ADP-Ribosa) Polimerasa-1 , Multimerización de Proteína , Especificidad por Sustrato
7.
Life Sci Alliance ; 7(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39074902

RESUMEN

After whole-genome duplication (WGD), tetraploid cells can undergo multipolar mitosis or pseudo-bipolar mitosis with clustered centrosomes. Kinesins play a crucial role in regulating spindle formation. However, the contribution of kinesin expression levels to the heterogeneity in centrosome clustering observed across different cell lines after WGD remains unclear. We identified two subsets of cell lines: "BP" cells efficiently cluster extra centrosomes for pseudo-bipolar mitosis, and "MP" cells primarily undergo multipolar mitosis after WGD. Diploid MP cells contained higher levels of KIF11 and KIF15 compared with BP cells and showed reduced sensitivity to centrosome clustering induced by KIF11 inhibitors. Moreover, partial inhibition of KIF11 or depletion of KIF15 converted MP cells from multipolar to bipolar mitosis after WGD. Multipolar spindle formation involved microtubules but was independent of kinetochore-microtubule attachment. Silencing KIFC1, but not KIFC3, promoted multipolar mitosis in BP cells, indicating the involvement of specific kinesin-14 family members in counteracting the forces from KIF11/KIF15 after WGD. These findings highlight the collective role of KIF11, KIF15, and KIFC1 in determining the polarity of the mitotic spindle after WGD.


Asunto(s)
Centrosoma , Cinesinas , Mitosis , Huso Acromático , Cinesinas/metabolismo , Cinesinas/genética , Centrosoma/metabolismo , Humanos , Mitosis/genética , Huso Acromático/metabolismo , Duplicación de Gen , Microtúbulos/metabolismo , Línea Celular , Cinetocoros/metabolismo , Genoma Humano
8.
Mol Cancer Res ; 22(5): 423-439, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38324016

RESUMEN

NDC80 complex (NDC80C) is composed of four subunits (SPC24, SPC25, NDC80, and NUF2) and is vital for kinetochore-microtubule (KT-MT) attachment during mitosis. Paradoxically, NDC80C also functions in the activation of the spindle-assembly checkpoint (SAC). This raises an interesting question regarding how mitosis is regulated when NDC80C levels are compromised. Using a degron-mediated depletion system, we found that acute silencing of SPC24 triggered a transient mitotic arrest followed by mitotic slippage. SPC24-deficient cells were unable to sustain SAC activation despite the loss of KT-MT interaction. Intriguingly, our results revealed that other subunits of the NDC80C were co-downregulated with SPC24 at a posttranslational level. Silencing any individual subunit of NDC80C likewise reduced the expression of the entire complex. We found that the SPC24-SPC25 and NDC80-NUF2 subcomplexes could be individually stabilized using ectopically expressed subunits. The synergism of SPC24 downregulation with drugs that promote either mitotic arrest or mitotic slippage further underscored the dual roles of NDC80C in KT-MT interaction and SAC maintenance. The tight coordinated regulation of NDC80C subunits suggests that targeting individual subunits could disrupt mitotic progression and provide new avenues for therapeutic intervention. IMPLICATIONS: These results highlight the tight coordinated regulation of NDC80C subunits and their potential as targets for antimitotic therapies.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas del Citoesqueleto , Mitosis , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Células HeLa , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Huso Acromático/metabolismo , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética
9.
Cancer Commun (Lond) ; 44(2): 251-272, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38152992

RESUMEN

BACKGROUND: Small extracellular vesicles (sEVs) mediate intercellular communication that contributes to hepatocellular carcinoma (HCC) progression via multifaceted pathways. The success of cell entry determines the effect of sEV on recipient cells. Here, we aimed to delineate the mechanisms underlying the uptake of sEV in HCC. METHODS: Macropinocytosis was examined by the ability of cells to internalize dextran and sEV. Macropinocytosis was analyzed in Na(+)/H(+) exchanger 7 (NHE7)-knockdown and -overexpressing cells. The properties of cells were studied using functional assays. pH biosensor was used to evaluate the intracellular and endosomal pH. The expression of NHE7 in patients' liver tissues was examined by immunofluorescent staining. Inducible silencing of NHE7 in established tumors was performed to reveal the therapeutic potential of targeting NHE7. RESULTS: The data revealed that macropinocytosis controlled the internalization of sEVs and their oncogenic effect on recipient cells. It was found that metastatic HCC cells exhibited the highest efficiency of sEV uptake relative to normal liver cells and non-metastatic HCC cells. Attenuation of macropinocytic activity by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) limited the entry of sEVs and compromised cell aggressiveness. Mechanistically, we delineated that high level of NHE7, a sodium-hydrogen exchanger, alkalized intracellular pH and acidized endosomal pH, leading to the maturation of macropinosomes. Inducible inhibition of NHE7 in established tumors developed in mice delayed tumor development and suppressed lung metastasis. Clinically, NHE7 expression was upregulated and linked to dismal prognosis of HCC. CONCLUSIONS: This study advances the understanding that NHE7 enhances sEV uptake by macropinocytosis to promote the malignant properties of HCC cells. Inhibition of sEV uptake via macropinocytosis can be exploited as a treatment alone or in combination with conventional therapeutic approaches for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Línea Celular , Neoplasias Hepáticas/genética , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Regulación hacia Arriba
10.
J Biol Chem ; 287(25): 21561-9, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22544748

RESUMEN

Antimitotic spindle poisons are among the most important chemotherapeutic agents available. However, precocious mitotic exit by mitotic slippage limits the cytotoxicity of spindle poisons. The MAD2-binding protein p31(comet) is implicated in silencing the spindle assembly checkpoint after all kinetochores are attached to spindles. In this study, we report that the levels of p31(comet) and MAD2 in different cell lines are closely linked with susceptibility to mitotic slippage. Down-regulation of p31(comet) increased the sensitivity of multiple cancer cell lines to spindle poisons, including nocodazole, vincristine, and Taxol. In the absence of p31(comet), lower concentrations of spindle poisons were required to induce mitotic block. The delay in checkpoint silencing was induced by an accumulation of mitotic checkpoint complexes. The increase in the duration of mitotic block after p31(comet) depletion resulted in a dramatic increase in mitotic cell death upon challenge with spindle poisons. Significantly, cells that are normally prone to mitotic slippage and resistant to spindle disruption-mediated mitotic death were also sensitized after p31(comet) depletion. These results highlight the importance of p31(comet) in checkpoint silencing and its potential as a target for antimitotic therapies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Citostáticos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Huso Acromático/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Resistencia a Antineoplásicos/genética , Células HeLa , Células Hep G2 , Humanos , Proteínas Nucleares/genética , Huso Acromático/genética
11.
J Biol Chem ; 286(15): 13052-9, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21335556

RESUMEN

Anaphase is promoted by the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) only when all the chromosomes have achieved bipolar attachment to the mitotic spindles. Unattached kinetochores or the absence of tension between the paired kinetochores activates a surveillance mechanism termed the spindle-assembly checkpoint. A fundamental principle of the checkpoint is the activation of mitotic arrest deficient 2 (MAD2). MAD2 then forms a diffusible complex called mitotic checkpoint complex (designated as MAD2(MCC)) before it is recruited to APC/C (designated as MAD2(APC/C)). Large gaps in our knowledge remain on how MAD2 is inactivated after the checkpoint is satisfied. In this study, we have investigated the regulation of MAD2-containing complexes during mitotic progression. Using selective immunoprecipitation of checkpoint components and gel filtration chromatography, we found that MAD2(MCC) and MAD2(APC/C) were regulated very differently during mitotic exit. Temporally, MAD2(MCC) was broken down ahead of MAD2(APC/C). The inactivation of the two complexes also displayed different requirements of proteolysis; although APC/C and proteasome activities were dispensable for MAD2(MCC) inactivation, they are required for MAD2(APC/C) inactivation. In fact, the degradation of CDC20 is inextricably linked to the breakdown of MAD2(APC/C). These data extended our understanding of the checkpoint complexes during checkpoint silencing.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Mitosis/fisiología , Proteínas Represoras/metabolismo , Huso Acromático/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Unión al Calcio/genética , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Proteínas Mad2 , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Represoras/genética , Huso Acromático/genética , Complejos de Ubiquitina-Proteína Ligasa/genética
12.
Biochem J ; 435(1): 17-31, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21406064

RESUMEN

Mitosis is associated with profound changes in cell physiology and a spectacular surge in protein phosphorylation. To accomplish these, a remarkably large portion of the kinome is involved in the process. In the present review, we will focus on classic mitotic kinases, such as cyclin-dependent kinases, Polo-like kinases and Aurora kinases, as well as more recently characterized players such as NIMA (never in mitosis in Aspergillus nidulans)-related kinases, Greatwall and Haspin. Together, these kinases co-ordinate the proper timing and fidelity of processes including centrosomal functions, spindle assembly and microtubule-kinetochore attachment, as well as sister chromatid separation and cytokinesis. A recurrent theme of the mitotic kinase network is the prevalence of elaborated feedback loops that ensure bistable conditions. Sequential phosphorylation and priming phosphorylation on substrates are also frequently employed. Another important concept is the role of scaffolds, such as centrosomes for protein kinases during mitosis. Elucidating the entire repertoire of mitotic kinases, their functions, regulation and interactions is critical for our understanding of normal cell growth and in diseases such as cancers.


Asunto(s)
Mitosis , Proteínas Quinasas/metabolismo , Transducción de Señal , Animales , Centrosoma/metabolismo , Citocinesis , Daño del ADN , Humanos , Fosforilación/fisiología , Huso Acromático/metabolismo
13.
Methods Mol Biol ; 2329: 323-335, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34085233

RESUMEN

The revolutionary CRISPR technology opens a new era of cell biology in mammalian cells. The InDel mutation is induced by CRISPR and results in the frameshift mutation of the gene. Owing to the nature of CRISPR induced knockout, the conditional knockout using CRISPR technology is not common. With the recent development of the small molecule-inducible degron system, an analogous system to the classical genetic conditional knockout has become feasible. By integrating CRISPR-knockout, the tetracycline-controlled transcriptional and auxin-induced degradation post-translational control of protein expression, a method imitating the conditional knockout is developed. We herein describe the detailed protocol for the generation of a conditional protein inactivation in human cancer cells. The system is especially useful to study essential gene function in aneuploidy cancer cells where gain in copy number is common.


Asunto(s)
Ciclina A2/genética , Ciclina A2/metabolismo , Técnicas de Inactivación de Genes/métodos , Ácidos Indolacéticos/farmacología , Tetraciclina/farmacología , Sistemas CRISPR-Cas , Mutación del Sistema de Lectura , Regulación de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Proteolisis , Retroviridae/genética , Transcripción Genética/efectos de los fármacos
14.
Mol Biol Cell ; 32(14): 1320-1330, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33979199

RESUMEN

Loss-of-function analysis is one of the major arsenals we have for understanding gene functions in mammalian cells. For analysis of essential genes, the major challenge is to develop simple methodologies for tight and rapid inducible gene inactivation. One approach involves CRISPR-Cas9-mediated disruption of the endogenous locus in conjunction with the expression of a rescue construct, which can subsequently be turned off to produce a gene inactivation effect. Here we describe the development of a set of Sleeping Beauty transposon-based vectors for expressing auxin-inducible degron (AID)-tagged genes under the regulation of a tetracycline-controlled promoter. The dual transcriptional and degron-mediated post-translational regulation allows rapid and tight silencing of protein expression in mammalian cells. We demonstrated that both non-essential and essential genes could be targeted in human cell lines using a one-step transfection method. Moreover, multiple genes could be simultaneously or sequentially targeted, allowing inducible inactivation of multiple genes. These resources enable highly efficient generation of conditional gene silencing cell lines to facilitate functional studies of essential genes.


Asunto(s)
Regulación de la Expresión Génica/genética , Silenciador del Gen/fisiología , Ingeniería Genética/métodos , Animales , Sistemas CRISPR-Cas , Línea Celular , Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Genes Esenciales/genética , Genes Reporteros/genética , Vectores Genéticos/genética , Humanos , Ácidos Indolacéticos/metabolismo , Mutación con Pérdida de Función/genética , Regiones Promotoras Genéticas/genética , Transfección , Transposasas/genética , Transposasas/metabolismo
15.
Cell Rep ; 37(2): 109808, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644583

RESUMEN

One of the most intriguing features of cell-cycle control is that, although there are multiple cyclin-dependent kinases (CDKs) in higher eukaryotes, a single CDK is responsible for both G1-S and G2-M in yeasts. By leveraging a rapid conditional silencing system in human cell lines, we confirm that CDK1 assumes the role of G1-S CDK in the absence of CDK2. Unexpectedly, CDK1 deficiency does not prevent mitotic entry. Nonetheless, inadequate phosphorylation of mitotic substrates by noncanonical cyclin B-CDK2 complexes does not allow progression beyond metaphase and underscores deleterious late mitotic events, including the uncoupling of anaphase A and B and cytokinesis. Elevation of CDK2 to a level similar to CDK1 overcomes the mitotic defects caused by CDK1 deficiency, indicating that the relatively low concentration of CDK2 accounts for the defective anaphase. Collectively, these results reveal that the difference between G2-M and G1-S CDKs in human cells is essentially quantitative.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proliferación Celular , Mitosis , Epitelio Pigmentado de la Retina/enzimología , Neoplasias del Cuello Uterino/enzimología , Proteína Quinasa CDC2/genética , Ciclina B/genética , Ciclina B/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Fosforilación , Transducción de Señal , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
16.
Mol Biol Cell ; 18(5): 1861-73, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17344473

RESUMEN

The role of cyclin B-CDC2 as M phase-promoting factor (MPF) is well established, but the precise functions of cyclin A remain a crucial outstanding issue. Here we show that down-regulation of cyclin A induces a G2 phase arrest through a checkpoint-independent inactivation of cyclin B-CDC2 by inhibitory phosphorylation. The phenotype is rescued by expressing cyclin A resistant to the RNA interference. In contrast, down-regulation of cyclin B disrupts mitosis without inactivating cyclin A-CDK, indicating that cyclin A-CDK acts upstream of cyclin B-CDC2. Even when ectopically expressed, cyclin A cannot replace cyclin B in driving mitosis, indicating the specific role of cyclin B as a component of MPF. Deregulation of WEE1, but not the PLK1-CDC25 axis, can override the arrest caused by cyclin A knockdown, suggesting that cyclin A-CDK may tip the balance of the cyclin B-CDC2 bistable system by initiating the inactivation of WEE1. These observations show that cyclin A cannot form MPF independent of cyclin B and underscore a critical role of cyclin A as a trigger for MPF activation.


Asunto(s)
Ciclina A/metabolismo , Factor Promotor de Maduración/metabolismo , Mitosis/fisiología , Secuencia de Bases , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina A/antagonistas & inhibidores , Ciclina A/genética , Ciclina B/antagonistas & inhibidores , Ciclina B/genética , Ciclina B/metabolismo , Cartilla de ADN/genética , Regulación hacia Abajo , Fase G2/fisiología , Células HeLa , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Fosfatasas cdc25/metabolismo , Quinasa Tipo Polo 1
17.
Mutat Res ; 821: 111716, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32738522

RESUMEN

It is well established that Aurora kinases perform critical functions during mitosis. It has become increasingly clear that the Aurora kinases also perform a myriad of non-mitotic functions including DNA damage response. The available evidence indicates that inhibition Aurora kinase A (AURKA) may contribute to the G2 DNA damage checkpoint through AURKA's functions in PLK1 and CDC25B activation. Both AURKA and Aurora kinase B (AURKB) are also essential in mitotic DNA damage response that guard against DNA damage-induced chromosome segregation errors, including the control of abscission checkpoint and prevention of micronuclei formation. Dysregulation of Aurora kinases can trigger DNA damage in mitosis that is sensed in the subsequent G1 by a p53-dependent postmitotic checkpoint. Aurora kinases are themselves linked to the G1 DNA damage checkpoint through p53 and p73 pathways. Finally, several lines of evidence provide a connection between Aurora kinases and DNA repair and apoptotic pathways. Although more studies are required to provide a comprehensive picture of how cells respond to DNA damage, these findings indicate that both AURKA and AURKB are inextricably linked to pathways guarding against DNA damage. They also provide a rationale to support more detailed studies on the synergism between small-molecule inhibitors against Aurora kinases and DNA-damaging agents in cancer therapies.


Asunto(s)
Antineoplásicos/uso terapéutico , Aurora Quinasas/antagonistas & inhibidores , Daño del ADN , Reparación del ADN , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Animales , Humanos , Neoplasias/genética , Neoplasias/patología
18.
Mol Cancer Ther ; 19(1): 123-134, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31597711

RESUMEN

PARP inhibitors have emerged as effective chemotherapeutic agents for BRCA1/BRCA2-deficient cancers. Another DNA damage response protein, ATM, is also increasingly being recognized as a target for synthetic lethality with PARP inhibitors. As ATM functions in both cell cycle arrest and DNA repair after DNA damage, how cells respond to inhibition of ATM and PARP1 is yet to be defined precisely. We found that loss of ATM function, either in an ATM-deficient background or after treatment with ATM inhibitors (KU-60019 or AZD0156), results in spontaneous DNA damage and an increase in PARylation. When PARP1 is also deleted or inhibited with inhibitors (olaparib or veliparib), the massive increase in DNA damage activates the G2 DNA damage checkpoint kinase cascade involving ATR, CHK1/2, and WEE1. Our data indicated that the role of ATM in DNA repair is critical for the synergism with PARP inhibitors. Bypass of the G2 DNA damage checkpoint in the absence of ATM functions occurs only after a delay. The relative insensitivity of PARP1-deficient cells to PARP inhibitors suggested that other PARP isoforms played a relatively minor role in comparison with PARP1 in synergism with ATMi. As deletion of PARP1 also increased sensitivity to ATM inhibitors, trapping of PARP1 on DNA may not be the only mechanism involved in the synergism between PARP1 and ATM inhibition. Collectively, these studies provide a mechanistic foundation for therapies targeting ATM and PARP1.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Daño del ADN/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Sinergismo Farmacológico , Humanos
19.
Oncogene ; 39(13): 2819-2834, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32029899

RESUMEN

Mitotic slippage involves cells exiting mitosis without proper chromosome segregation. Although degradation of cyclin B1 during prolonged mitotic arrest is believed to trigger mitotic slippage, its upstream regulation remains obscure. Whether mitotic slippage is caused by APC/CCDC20 activity that is able to escape spindle-assembly checkpoint (SAC)-mediated inhibition, or is actively promoted by a change in SAC activity remains an outstanding issue. We found that a major culprit for mitotic slippage involves reduction of MAD2 at the kinetochores, resulting in a progressive weakening of SAC during mitotic arrest. A further level of control of the timing of mitotic slippage is through p31comet-mediated suppression of MAD2 activation. The loss of kinetochore MAD2 was dependent on APC/CCDC20, indicating a feedback control of APC/C to SAC during prolonged mitotic arrest. The gradual weakening of SAC during mitotic arrest enables APC/CCDC20 to degrade cyclin B1, cumulating in the cell exiting mitosis by mitotic slippage.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2/metabolismo , Mitosis/genética , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Ciclina B1/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Interferente Pequeño/metabolismo , Huso Acromático/metabolismo
20.
Nucleic Acids Res ; 35(4): e22, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17234679

RESUMEN

RNA interference (RNAi) by means of short hairpin RNA (shRNA) has developed into a powerful tool for loss-of-function analysis in mammalian cells. The principal problem in RNAi experiments is off-target effects, and the most vigorous demonstration of the specificity of shRNA is the rescue of the RNAi effects with a shRNA-resistant target gene. This presents its own problems, including the unpredictable relative expression of shRNA and rescue cDNA in individual cells, and the difficulty in generating stable cell lines. In this report, we evaluated the plausibility of combining the expression of shRNA and rescue cDNA in the same vector. In addition to facilitate the validation of shRNA specificity, this system also considerably simplifies the generation of shRNA-expressing cell lines. Since the compensatory cDNA is under the control of an inducible promoter, stable shRNA-expressing cells can be generated before the knockdown phenotypes are studied by conditionally turning off the rescue protein. Conversely, the rescue protein can be activated after the endogenous protein is completely repressed. This approach is particularly suitable when prolonged expression of either the shRNA or the compensatory cDNA is detrimental to cell growth. This system allows a convenient one-step validation of shRNA and generation of stable shRNA-expressing cells.


Asunto(s)
Interferencia de ARN , ARN no Traducido/biosíntesis , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Ciclina A/antagonistas & inhibidores , Ciclina A/genética , ADN Complementario/biosíntesis , ADN Complementario/genética , Ingeniería Genética/métodos , Vectores Genéticos , Células HeLa , Humanos , Proteínas Mad2 , Fenotipo , Plásmidos/genética , ARN no Traducido/química , ARN no Traducido/genética , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA